

1

D4.8 Application Security

March 2021

2

Grant Agreement No. 814917

Multi-layered Security technologies to ensure hyper-connected

smart cities with Blockchain, BigData, Cloud and IoT

Project acronym M-Sec

Deliverable D4.8 Application security

Work Package WP4

Submission date 31 March 2021

Deliverable lead Georgios Palaiokrassas (ICCS)

Authors Georgios Palaiokrassas (ICCS), Kenji Tei (WU), Nobukazu Yoshioka (NII),

Takafumi Komoto (NII), Orfefs Voutyras (ICCS)

Internal reviewer Mathieu Gallissot

Dissemination Level Public

Type of deliverable DEM

The M-Sec project is jointly funded by the European Union’s Horizon 2020 research and innovation programme

(contract No 814917) and by the Commissioned Research of National Institute of Information and

Communications Technology (NICT), JAPAN (contract No. 19501).

3

Version history

Date Authors (Organization) Changes

v0.1 01 February 2021 Georgios Palaiokrassas (ICCS) Full ToC and assignments

v0.2 02 March 2021
Kenji Tei (WU), Takafumi Komoto (NII),

Nobukazu Yoshioka (NII)

Initial inputs to Development

& Designing Tools FG

v0.3 16 March 2021
Kenji Tei (WU), Takafumi Komoto (NII),

Nobukazu Yoshioka (NII)
Updated Section 3

v0.4 17 March 2021 Georgios Palaiokrassas (ICCS)
IoT Marketplace FG

contribution

v0.5 18 March 2021 Kenji Tei (WU) Updated Section 3

v0.6 25 March 2021 Georgios Palaiokrassas (ICCS) APIs & Integrations

v0.7 27 March 2021 Georgios Palaiokrassas (ICCS) Additions, corrections

v0.8 29 March 2021 Orfefs Voutyras (ICCS)
Architecture diagrams

provided, review

v0.9 30 March 2021 Mathieu Gallissot (CEA) Internal Review

V0.10 30 March 2021 Georgios Palaiokrassas (ICCS) Version ready for submission

4

Table of Contents

Version history ... 3

Table of Contents .. 4

List of Tables .. 5

List of Figures ... 5

Glossary ... 7

Executive Summary ... 8

1. Introduction .. 9

1.1 Scope of the document ... 9

1.2 Relation to other work packages and tasks ... 9

1.3 Relation to M-Sec Risks ... 10

2. IoT Marketplace FG ... 15

2.1 General Description of the FG ... 15

2.2 Components of the FG ... 15

IoT Marketplace .. 15

2.3 Interactions with other FGs ... 31

Interaction with Security and Trusted Storage FG .. 32

Interaction with Security city-data Access FG .. 32

Interaction with End To End FG .. 33

3. Development & Security Designing Tools FG ... 35

3.1 General Description of the FG ... 35

3.2 Components of the FG ... 35

Secure Analysis Tool (SAT) .. 35

Modal System Transition Analyzer (MTSA) .. 36

3.3 Interactions with other FGs (or assets) ... 38

Interaction with Node-RED ... 38

3.4 API .. 39

4. Conclusion ... 40

Annex ... 41

5

List of Tables

Table 1: M-Sec T4.4 risks and threats .. 11

Table 2. Types of sensors ... 23

List of Figures

Figure 1. T4.4 and D4.8 relation to other WPs and Tasks ... 9

Figure 2. Overview of the M-Sec IoT Marketplace and its components ... 16

Figure 3. Node-Red Flow for the simulation of IoT sensor data.. 17

Figure 4. Graphical User Interface enabling searching of sensors in the smart contracts running on blockchain

 ... 18

Figure 5. Graphical User Interface of the returned results after the query to the smart contract 18

Figure 6. Graphical User Interface of the Explorer .. 19

Figure 7. Available SOXFire sensors registered in IoT Marketplace .. 19

Figure 8. Buying data from a specific sensor ... 20

Figure 9. Browsing in the dedicated interface for recent activity and recent transactions 20

Figure 10. Browsing all the purchased data from sensors. ... 21

Figure 11. Example of data from sensors located in Japan and arriving to Marketplace through the Bridge .. 21

Figure 12. Interfaces supporting the buyers and seller of media items .. 22

Figure 13. M-Sec Token overview page ... 22

Figure 14. Example call of registerNewSensor function, using Postman .. 25

Figure 15.Example call of getAllSensors function, using Postman .. 26

Figure 16. Example call of getSensorsBySellerPublicKey function, using Postman ... 27

Figure 17. Example call of changeSensorPublicKey function, using Postman ... 28

Figure 18. IoT Marketplace FG with other FGs .. 32

Figure 19. Example of data flow between Secured and Trusted Storage FG and IoT Marketplace FG 32

Figure 20. Overview of SOXFire – Blockchain - IoT Marketplace Bridge ... 33

Figure 21. Technical overview of SOXFire – Blockchain – IoT Marketplace Bridge ... 33

6

Figure 22. Example of certificate-based authentication and authorization between an IoT device and a backend

 ... 34

Figure 23. The Security Analysis Tool .. 36

Figure 24. MTSA Overview .. 37

Figure 25. MTSA Functionalities .. 37

Figure 26. MTSA-Node-RED Integration via Translation Tool ... 38

Figure 27. An Example of LTS-based behavior specification and corresponding Node-RED program.............. 39

Figure 28. The M-Sec Architecture (T4.4 FGs in yellow) ... 41

7

Glossary

Acronym Description

API Application Programming Interface

SAT Security Analysis Tool

CCD Companion Database

MTSA Model System Transition Analyzer

Dx.y Deliverable y of WP x

FG Functional Group

Tx.y Task y of WP x

P2P Peer-to-peer

WP Work Package

UC Use Case

JSON JavaScript Object Notation

8

Executive Summary

The work described in this deliverable (D4.8) was carried out in the framework of WP4 – “Multi-layered

Security Technologies”, and more specifically, in the framework of T4.4 – “Application Level Security”. The

report presents the updated and final version of the document (the first version being D4.7), providing the

technical details of the Functional Group and Functional Components related to the Task.

All technical partners involved in this task collaborated and developed the appropriate tools to meet the

objectives set out in the project, especially with regard to novel Security aspects in IoT contexts. Every partner

focuses on the individual modules that they are responsible for during the implementation phase of WP4 and

supports the integration activities of WP2 while following the common Architecture framework set by WP3 in

D3.4.

All of the updated versions of the WP4 technical deliverables (D4.2, D4.4, D4.6, D4.8, D4.10) follow the same

approach and have the same structure. Section 1 provides an introduction to the scope of this document and

its relation with other WPs and Tasks. Sections 2 and 3, which aggregate all the main outcomes of the Task,

present the FG and the Functional Components covered by the Task, by providing an extensive description of

the corresponding functionalities, and details related to the API of the FGs and their interactions with other

FGs of the M-Sec solution. Finally, Section 4 concludes the document.

Regarding the differences between ‘D4.7 M-Sec Application Level Security – first version’ and ‘D4.8 M-Sec

Application Level Security – final version’:

• Section 1 has remained more or less the same but includes an extra subsection identifying the M-Sec Risks

linked to this specific Task.

• Sections 2 and 3 as a whole provides a more integrated view of the Components, as it focuses on their

presentation from an FG perspective. Components have been moved from/to other deliverables

accordingly.

• Section 4 corresponds to Section 4 of the previous version of the document.

All in all, the deliverable is considered to have provided all of the information required to expose the M-Sec
technical solutions related to T4.4 as well as the results of the integration and demonstration-related activities.

9

1. Introduction

1.1 Scope of the document

The main focus of this task is to establish engineering foundations to support the development of secure smart

city applications on the top of M-Sec platform. Security requirements for smart city applications should be

elicited by identifying security goals, assets to be protected, and threats. In addition, protection mechanisms

mitigating the threats should be designed and implemented in applications. M-Sec provides methodologies

and tools to develop smart city applications in order to support developers of smart city applications

Following the final version of the architecture presented in Deliverable 3.4, the components about to be

discussed in this report are part of the so-called IoT Marketplace Functional Group (FG) and the Development

& Security Designing Tools FG.

All in all, this task has as its main objective the definition and ulterior implementation of the M-Sec application

security layer and thus starts with the services it comprises, which have evolved from the initial description in

Deliverable 4.7, in parallel to the execution of Stage 1 of the different pilots.

This document addresses the main objectives of this task establishing the M-Sec components strengthening

the application layer, which will become one of the security layers in the overall Multi-layer Security (M-Sec)

platform, providing the needed security and reliability for smart city applications.

1.2 Relation to other work packages and tasks

The following figure summarises the relations of this deliverable (and the corresponding task) to other tasks

and WPs.

Figure 1. T4.4 and D4.8 relation to other WPs and Tasks

10

The work done in Task 4.4 is directly related to WP3. T4.4 receives input system and user requirements from

T3.1 and Risks- and Threats-related information from T3.3. Moreover, it follows the common Architectural

framework that has been identified in T3.2 for the coordination of all the technical activities. Similarly, the

Task receives input from WP2 related to the coverage of the needs of the UCs and the pilots.

Within this very same work package, Task 4.4 is related to Task 4.1 and Task 4.2, where the IoT security layer

and cloud/data security layer are discussed, respectively. Smart city applications are designed and

implemented by using API provided by those layers. Besides, it is also related to Task 4.3 and the relation to

all the other WP4 tasks is documented with the direct or indirect integration with other FGs and their

components.

Finally, the results of this report are directly provided as input to T2.3 which is focusing on the overall

integration activities. Together with the other final deliverables of WP4, D4.2 provides all the information and

functionalities required for an integrated security solution.

1.3 Relation to M-Sec Risks

The complete list of potential risks and threats that may affect M-Sec’s IoT layer can be checked in Table 1, as

extracted from Task 3.3.

All of these threats are of Type “Cloud”, and Sub-Type “Data Access”, “Storage” or “Management”. Specific

interfaces are provided in D3.5.

11

Table 1: M-Sec T4.4 risks and threats

Threat # Description
STRIDE

Threat Class
M-Sec Asset Source

Probabi-

lity

Critica-

lity

Ra-

ting
Comments/ Mitigation

Thr.App.

1

Libraries and modules on which the

application is reliant, can be

compromised or replaced by malicious

versions. (they can be affected by the

same threats as the application itself)

S, D, T All Use

Cases

1 3 3 Vulnerability Assessment

Thr.App.

2

Other malicious agents can issue

requests and data on behalf of the

application.

S (e.g. IP

Spoofing)

Connected Care Use Case

2

3 5 15 Companion DB may mitigate

some of the risks; the

application will not know the

keys, only the user will know

it. Authentication

mechanism.

Thr.App.

3

Malicious agents may have read access

to the data the application is

processing, and results.

S, I Park Guide,

Connected Care,

Smile City Report

Use Case

1, Use

Case 2

3 5 15 Companion DB may mitigate

some of the risks. Only

authorized agents can access

M-Sec sensitive data. It is

encrypted/decrypted

through the Companion DB.

Authentication mechanism.

Thr.App.

4

Malicious agents may have write access

to the data the application is

processing. Being able to change it and

produce unpredicted states

T Connected Care Use Case

2

3 5 15 With the Companion DB,

only authorized agents can

access M-Sec sensitive data.

It is encrypted/decrypted

through the Companion DB.

Authentication mechanism.

12

Thr.App.

5

Data sources may be replaced, feeding

erroneous or malicious data into the

system workflow. E.g: Buffer overflow;

cross-site scripting; SQL injection;

canonicalization

E, T Connected Care,

Smile City Report

Use Case

2

1 3 3 With the Companion

Database, the data is

encrypted and linked to the

blockchain, so it cannot be

tampering. Authentication

mechanism.

Thr.App.

6

Compiled, binaries or bytecode of the

application may be corrupted or

maliciously altered for execution.

T All Use

Cases

3 5 15 Memory Protection

Thr.App.

7

Legit requests may have undesirable

effects.

T, D All Use

Cases

3 5 15 Vulnerability Assessment

Thr.App.

8

The user may be convinced to perform

actions that expose their data, or the

application workflow (Social

Engineering)

R All Use

Cases

1 3 3 Security Learning

Thr.App.

9

Stored Data may be compromised.

Either the cryptographic keys are not

secure enough; the algorithms, the

storage container is compromised or

there might be some issue in the whole

workflow.

T Park Guide,

Connected Care,

Smile City Report

Use Case

1, Use

Case 2

1 5 5 With the Companion

Database, the storage of the

sensitive dat is in a different

database, so they should

compromise at least the two

databases. Vulnerability

Assessment

Thr.App.

10

The user account is compromised.

Either because the user has released,

forgot, or shared her/his credentials, or

because the account is meant to be

shared amongst several users.

S Park Guide, Smile

City Report

All Use

Cases

3 5 15 Log Mechanism

13

Thr.App.

11

The application may be compromised,

because there is some extreme cases

that are not considered, or certain

assumptions make it susceptible to get

to unstable states

I MTSA All Use

Cases

1 5 5 Vulnerability Assessment

Thr.App.

12

The application (or platform) does not

provide log of the transactions and/or

execution trace. Leaving potential

attacks un accounted.

R Park Guide,

Connected Care,

Smile City Report

Use Case

1, Use

Case 2

1 5 5 The Companion DB provides

some logs of interactions, but

it is not its main purpose.

Vulnerability assessment.

Thr.App.

13

The application uses un registered

communications (not known to the

underlying platform) or without relation

to the functioning of the app itself.

E All Use

Cases

1 5 5 Vulnerability Assessment

Thr.App.

14

The application does not use the

appropriate authorization mechanisms,

or these mechanisms can be easily

circumvented

S Connected Care Use Case

2

1 5 5 In the backend site, the

Companion DB uses a smart

contract in order to grant

access to the sensitive data.

Vulnerability assessment.

Thr.App.

15

The application does not use the

appropriate authentication

mechanisms, or these mechanisms can

be compromised (e.g.: key logger, un

secured password storage or

transmission, etc.)

S All Use

Cases

1 5 5 Vulnerability Assessment

Thr.App.

16

Vulnerabilities-flaws in smart contracts T,R,I,D Blockchain app /

Smart contract

All Use

Cases

3 5 15 Flaws in smart contracts can

cause unforeseen security

breaches. Thorough lab

testing before going into

14

production. Continous code

review.

Thr.App.

17

Under-optimized smart contracts T,R,I,D Blockchain app /

Smart contract

All Use

Cases

3 3 9 Dead code, loop fusion,

repeated computation can

cause denial of service on the

long run. Thorough lab

testing before going into

production. Continous code

review.

Thr.App.

18

Transaction privacy leakage T,R,I,D Blockchain app /

Smart contract

All Use

Cases

3 3 9 Once identity is revealed the

whole history of transactions

is exposed. Thorough lab

testing before going into

production. Continous code

review.

Thr.App.

19

Misunderstanding of the agreement of

applications.

I All apps All Use

Cases

1 3 3 Agreement should be easy

and clear to understand.

Thr.App.

20

Personal information and facial images

are mistakenly uploaded in the

marketplace and traded.

I IoT Marketplace Use case

5

3 5 15 Need a check mechanism

Thr.App.

21

Malicious agents may make fake

transactions.

I IoT Marketplace Use case

5

3 5 15 Ensure by blockchain

technology

Thr.App.

22

Malicious agents may upload face data. I IoT Marketplace Use case

5

3 5 15 Ensure by blockchain

technology

15

2. IoT Marketplace FG

2.1 General Description of the FG

The IoT Marketplace FG consists of two main components: the IoT Marketplace and the Mobile Wallet. These

components are integrated with other FGs and directly or indirectly communicate with components from

other FGs. For the scope of this technical document, only the core M-Sec components are discussed, and as

such, the main focus will be on the IoT Marketplace.

In the following section, the components of the FG are described in detail. Section 2.3 presents the interactions

of these components with components of other M-Sec FGs. Finally, the Annex presents the position of the FG

within the whole M-Sec Architecture.

2.2 Components of the FG

IoT Marketplace

The goal is to create decentralized IoT ecosystems and validate their viability and sustainability. In this

direction, we define and implement a novel marketplace where smart objects can exchange information,

energy, and services through the use of virtual currencies allowing the real-time matching of supply and

demand enabling the creation of liquid markets with profitable business models of the IoT stakeholders. In

this section, we cover the basic technical implementation details of the M-Sec marketplace: market

participants, from IoT devices to humans using mobile applications are able to exchange data and value

through the M-Sec blockchain implementation.

16

General Description of the Prototype

Figure 2. Overview of the M-Sec IoT Marketplace and its components

In the previous Figure 2, we can see an overview of the developed marketplace and its components, explained

in detail through a specific example use of it.

1. The owner of a sensor/data source who wishes to make his data available for purchase or exchange

registers himself to the dedicated created smart contract providing information about the type of the

data, their frequency, the price, the location, etc.

2. A User of the M-Sec Platform who acts here as a potential buyer using our developed front end can

see all the available sensors and their data

3. Upon finding some interesting data he/she can retrieve additional detailed descriptions about them

and then

4. Buy the data of interest using M-Sec Tokens, which is a cryptocurrency in the form of a smart contract

running in on blockchain presented in the previous section

5. The deployed smart contracts communicate with each other to verify the sufficient funds of the buyer

and complete the purchase by transferring funds from the balance of the buyer to the one of the data

owner. The developed Node-Red flows also assist in this process connecting the different components

of the system

6. In the case of successful payment, when the buyer has sufficient funds and after the tokens are

transferred, a passcode is returned to the buyer necessary for accessing the purchased data

7. The buyer communicates with the platform and the API of the data owner and using the transactions

details requests the data

8. The desired data is returned to the buyer in a predefined format such as JSON

17

Components

Component Module 1: Node-Red Flows

In order to orchestrate the different components and services we have used Node-Red and have developed

several flows. Node-Red is a powerful visual tool for wiring together hardware devices, APIs, and web-services,

create flows that connect distributed components into a common IoT application1.

We developed different flows for the different parts of the IoT Marketplace.

During the development of the system, we simulated the IoT weather sensors provided by public APIs and for

this simulation, we used an API provided by Dark Sky2. Using Node-RED features we created flows that request

current weather data for several locations from the Dark Sky API and then save these data (air temperature,

relative humidity, pressure, visibility, wind speed and direction, sky cloud coverage, dew point, UV radiation,

and the columnar density of total atmospheric ozone layer) into a local database. We also exposed a RESTful

API in order to serve the data to the users when requested. When a request is received, the API key is checked.

If it is correct, the data responding to the specified time intervals is retrieved from the database and then sent

to the requester.

Figure 3. Node-Red Flow for the simulation of IoT sensor data

Component Module 2: Web Application

This web application provides interfaces between the users and the blockchain. It provides functionalities

helping users interact with the smart contracts deployed on Quorum Blockchain and access data they have

bought. It also allows sending transactions to and reading data of transactions and smart contracts. It also

“protects” users from misreading or mistyping info when sending a transaction.

We have used different languages and technologies to create these interfaces such as JavaScript, Bootstrap,

HTML, jQuery, Nodejs. Some of the developed interfaces are described below with screenshots and details.

We have used Web3.js to interact with the deployed smart contracts.

1 https://nodered.org/docs/
2 The Dark Sky Company, LLC, "Dark Sky," The Dark Sky Company, LLC, [Online]. Available: https://darksky.net/dev

https://nodered.org/docs/
https://darksky.net/dev

18

The user searches in all the available sensors registered in the Smart Contracts the sensors of interest

specifying details in the corresponding fields such as the location, the type the data (temperature, starting

date and time, frequency, etc.), as shown in Figure 4.

‘

Figure 4. Graphical User Interface enabling searching of sensors in the smart contracts running on blockchain

After specifying all the required information, a query is submitted to the smart contracts running on the

Quorum blockchain and a list of all the available sensors is returned with information of the address of the

data owner, the sensor type (temperature, pressure, visibility, etc.), the frequency, a link opening a map and

the option for the user to buy these data using M-Sec Tokens, as shown in Figure 5.

Figure 5. Graphical User Interface of the returned results after the query to the smart contract

An overview of the blockchain and the transactions included in each block is provided in our developed

Explorer interface, as shown in Figure 6. The user is able to search for specific blocks, transactions, users,

contracts and see the related activity.

19

Figure 6. Graphical User Interface of the Explorer

To facilitate the different use cases (mainly use case 3, use case 4, and use case 5) and end-users of the

pilots, we implemented the “SOXFire – Blockchain – IoT Marketplace Bridge”, which is described in detail in

the next section. Through this bridge, data are arriving from sensors, which are registered to the IoT

Marketplace and some indicative figures are shown below.

Figure 7. Available SOXFire sensors registered in IoT Marketplace

20

Figure 8. Buying data from a specific sensor

Figure 9. Browsing in the dedicated interface for recent activity and recent transactions

21

Figure 10. Browsing all the purchased data from sensors.

Figure 11. Example of data from sensors located in Japan and arriving to Marketplace through the Bridge

22

Figure 12. Interfaces supporting the buyers and seller of media items

Figure 13. M-Sec Token overview page

23

API: Blockchain framework exposed methods

In order to allow communication and integration with other components, services, assets, several methods

were developed. These methods are exposed via a RESTful API, while respective clients have been developed

to facilitate the integration process and documentation with examples and indicative architecture figures and

snippets. In the table that follows, some of the methods are presented, while we could note that part of them

have a final form, while others are still updated to facilitate the integration with other assets, better support

the use cases based on the feedback or improve security aspects of the provided services.

Method “registerNewSensor”

Name Input Response Description

registerNewSensor

()

String publicKey, int

sensorType, double

price, int startTime,

double frequency,

double lat, double long,

String urlOfData

{“message”:” Successfully

registered sensor” , “id”:

int}

This is a POSTmethod, which

Registers a new sensor

belonging to a specific user.

Price is described in M-Sec

tokens, timestamp in Unix

timestamp, and number of

measurements is provided per

hour e.g. 6

measurements/hour. The URL

of the data is the location,

where the buyer can find

them, it could be any kind of

database: SQL, MongoDB,

IPFS, etc

Regarding the sensor type, the possible values are described in the table that follows:

Table 2. Types of sensors

Code Type of Sensor Proposed unit of measurement

1 Temperature °C

2 Relative humidity %

3 Pressure Hectopascal – hPa

24

4 Visibility km

5 Wind speed and direction m/s

6 Sky cloud coverage %

7 Dew point °C

8 Solar Radiation watt/m²

9 UV index 0 to 11

10 Columnar density of total

atmospheric ozone layer

 Dobson – DU

11 Motion sensors Int [0,..]

12 Door window Int [0,..]

13 Smart Plug Volts

14 Smoke Bool (on/off)

15 Mattress Bool (on/off)

25

Figure 14. Example call of registerNewSensor function, using Postman

Method “getAllSensors”

Name Input Response Description

getAllSensors() -

[{ "sensorid": ,

"seller": ,

"sensortype":,

"price": ,

"starttime":,

"frequency":,

"latitude": "",

"longtitude": "",

"theurl": "",

"logindex":,

"transactionindex":,

"transactionhash":,

"blocknumber":,

"blockhash": ""

This is a GET method, which

returns details about all the

sensors registered by all

users/ smart cities

26

}]

Figure 15.Example call of getAllSensors function, using Postman

Method “getSensorsBySellerPublicKey”

Name Input Response Description

getSensorsBySellerPublicKey

()
-

[{ "sensorid": ,

"seller": ,

"sensortype":,

"price": ,

"starttime":,

"frequency":,

"latitude": "",

This is a GET method,

which returns details about

all the sensors registered

by a specific users/ smart

cities

27

"longtitude": "",

"theurl": "",

"logindex":,

"transactionindex":,

"transactionhash":,

"blocknumber": 210,

"blockhash": ""

}]

Figure 16. Example call of getSensorsBySellerPublicKey function, using Postman

Method “changeSensorPublicKey”

Name Input Response Description

changeSensorPublicKey()

String publicKey,

sensorID, String

publicKey

{“sensor”:””,

“message”:”success”}

This is a POST method,

which changes the owner of

a sensor

28

Figure 17. Example call of changeSensorPublicKey function, using Postman

Method “changeSensorPrice”

Name Input Response Description

changeSensorPrice ()
String publicKey,

sensorID, newPrice

{“sensor”:””,

“message”:”success”}

This is a POST method,

which changes the price of

data for a sensor

Method “changeSensorUrl”

Name Input Response Description

29

changeSensorUrl()
String publicKey,

sensorID, newUrl

{“sensor”:””,

“message”:”success”}

This is a POST method,

which changes the url of

data for a sensor

Method “purchaseMediaItem”

Name Input Response Description

purchaseMediaItem()
String publicKey, int

photoId
json

This is a POST method, for

purchasing media items

Method “getPurchasedPhotos”

Name Input Response Description

getPurchasedPhotos () String publicKey
{“sensor”:””,

“message”:”success”}

This is a GET method, which

changes the url of data for a

sensor

Method “browsePhotos”

Name Input Response Description

browsePhotos () filters [location, time] json (details, urls to IPFS)

This is a GET method, which

returns media items or

photos with specific filters

Package Information & Installation Instructions

Required Tools and dependencies

The following tools and dependencies are required to install and use the IoT Marketplace:

• NodeRed

• Nodejs

30

• MySQL

• Ethereum/Quorum Blockchain

• Nodejs and Javascript

Install NodeRed

• Node-Red: Node-RED is a powerful visual tool for wiring together hardware devices, APIs and web-

services, create flows and connect distributed components into a common IoT application

[https://nodered.org/].

o Installing Node-Red: The easiest way to install Node-RED is to use the node package manager,

npm, which comes with Node.js [https://nodered.org/docs/getting-started/installation].

Installing as a global module adds the command “node-red” to your system path:

▪ For Ubuntu:

• sudo npm install -g --unsafe-perm node-red

▪ For Windows, execute CMD with administrator rights and then execute:

• npm install -g --unsafe-perm node-red

o Version: We have installed Node-Red v0.17.5

o Running: after installing Node-Red as a global npm package, open a terminal and run the

“node-red” command. You can then access the Node-RED editor by pointing your browser at:

http://localhost:1880

o After accessing the editor, you have to left-click on the menu button (three lines on the top

right corner), then click on manage palette, switch to the install tab and search for the node-

red-contrib-neo4j package and install it. This will add the node required by our flows ensuring

the dependency.

Install Nodejs

• Node.js: Before installing Node-Red, a Node.js installation is required. We have installed Node.js

version v8.9.3.

o On Ubuntu machines we have to run the following commands:

▪ sudo apt-get update

▪ sudo apt-get upgrade

▪ sudo apt-get install node.js -y

▪ sudo apt-get install npm -y

o On Windows machines, we can download the appropriate installer from

https://nodejs.org/en/download and execute it.

Install MySQL

• We used the MariaDB SQL, but any other SQL relational database can be used. Full instructions of how

to install MariaDB database can be found here: https://downloads.mariadb.org/.

Install Front End

• Front End: We have developed a web front end, useful for end-users of our application. It provides a

Graphical User Interface

o Based on HTML, Javascript, Vue Javascript framework and other libraries

o Running: it is deployed on our server (and cloud servers as well) and accessible in http://snf-

755174.vm.okeanos.grnet.gr

31

Install Java

• Most of the systems used are built on top of java engines so a Java distribution needs to be installed

in the system before anything else.

o On Ubuntu machines a simple list of commands is enough to install the latest distribution of

Java:

▪ sudo add-apt-repository ppa:webupd8team/java

▪ sudo apt-get update

▪ sudo apt-get install -y oracle-java8-installer

▪ sudo apt-get update

o On Windows machines we have to download the appropriate installer from

https://java.com/en/download and execute it

Install Ethereum/Quorum Blockchain

Instructions are provided in the previous Section related to the Blockchain demonstrator.

Operating System

• We have tested the platform on Windows 10 and Ubuntu 18 but all of the software listed here is

available in a large number of other distributions.

Okeanos

• Okeanos: We have deployed our Node-Red and Neo4j services to Okeanos cloud service for Greek

Research and Academic Community

o https://okeanos.grnet.gr/home/

Licensing (if applicable)

Since ICCS/NTUA is a non-profit Academic Research Body, we will be releasing all related M-Sec results as

open-source contributions under Open Source licenses. Concretely, permissive licenses are not restrictive

licenses and they can be used to create a proprietary good, allowing commercial exploitation and ensuring

high impact. Examples of those are Apache, BSD, etc.

2.3 Interactions with other FGs

The following figure presents the interactions of the Secure City Data Access FG with other FGs and

components of the M-Sec solution. The Annex presents the position of the FG within the whole M-Sec

Architecture.

32

Figure 18. IoT Marketplace FG with other FGs

Interaction with Security and Trusted Storage FG

Integration between the IoT Marketplace FG and the Security and Trusted Storage FG was implemented. In

more detail, IoT Marketplace was directly integrated to all components of Security and Trusted Storage FG

namely Blockchain Framework, Middleware Services, and Crypto Companion DB.

In the following figure, the flow of the data can be seen, showing the integration of both FGs having as a

communication component the Worldline Connected Care Assistance.

Figure 19. Example of data flow between Secured and Trusted Storage FG and IoT Marketplace FG

Interaction with Security city-data Access FG

A point of integration with Security city-data Access FG and Security and Trusted Storage FG was implemented

to facilitate different use cases (mainly use case 3, use case 4, and use case 5) and end-users of the pilots. To

this direction, a new component was developed, namely “SOXFire – Blockchain – IoT Marketplace Bridge”

33

allowing registration of sensors, purchase/exchange of data, and visualization of data. An overview of this

component is shown in the following figure.

Figure 20. Overview of SOXFire – Blockchain - IoT Marketplace Bridge

A more technical figure is provided below, displaying details of this integration.

Figure 21. Technical overview of SOXFire – Blockchain – IoT Marketplace Bridge

Interaction with End To End FG

End-to-end security functional group provides accounting for the IoT Marketplace functional group. It enables

clients of the marketplace to be authenticated either as the owner of devices, owner of data, or simply a

consumer.

One interest in using the security manager instead of an internal database is to:

ICCS/KEIO

IN
TE

R
AT
IO
N

A
 I
D
AT
IO
N

34

• prevent the inclusion of falsified data in the marketplace by verifying and attesting the authenticity of the

source cryptographically.

• enable to trace the usage of the marketplace, in particular, to provide automatic breach notification and

other forms of remediation.

We present in the diagram below a mutual authentication between an IoT marketplace app and a secure

device. The secured device uses HTTPS flow to verify the IoT. The IoT marketplace app uses TLS Client

Authentication to verify the identity of the client (secure device).

In the diagram in Figure 22, we present a use-case allowing a secure device to send monitoring data to an IoT

marketplace app (here replaced by an InfluxDB database for development and testing purposes) every x

seconds. The proxy server (Nginx in the figure) verifies and checks the cert validity of every request using the

M-Sec OCSP mechanism. If the cert is valid, data will be stored on the influxDB. Otherwise, data will be

rejected, and users’ owners are notified.

Figure 22. Example of certificate-based authentication and authorization between an IoT device and a backend

35

3. Development & Security Designing Tools FG

3.1 General Description of the FG

The Development & Security Designing Tools FG aims to establish engineering foundations to support the

development of secure smart city applications. Although the smart-city platform itself is secured, application-

level vulnerabilities make systems insecure. However, ensuring application-level security requires tremendous

effort for developers. Components in the Development & Security Designing Tools FG provide a set of

methodologies and tools to support the development of secure smart city applications on top of the M-sec

platform. Key benefits achieved by those components include:

• Reduce developers’ effort for analyzing security requirements

• Mitigate risks to miss typical security threats

• Mitigate risks to include application-level vulnerabilities in specification by human errors

Specifically, the Development & Security Designing Tools FG in M-Sec provides the following key components,

which will be explained in this section:

• Security Analysis Tool

• Modal Transition System Analyzer

3.2 Components of the FG

Secure Analysis Tool (SAT)

SAT is a software security requirements modeling support tool for a misuse case diagram that enables the

creation of a diagram by embedding the element of the security knowledge.

SAT is implemented as a plugin of astah* (a UML modeling tool developed by Change Vision, Inc) Main

features provided by SAT are as follows:

• Misuse case diagram editor to draw misuse case diagrams,

• Knowledge base browser to represent security knowledge in the knowledge base.

• Knowledge search to search an appropriate security knowledge in the knowledge base.

Application developers with M-Sec platform can define new security countermeasures for the threats

identified by creating a misuse case diagrams.

36

Figure 23. The Security Analysis Tool

Modal System Transition Analyzer (MTSA)

MTSA is a software development tool to automatically synthesize a software behaviour specification with a

formal guarantee. A technique supported by the MTSA is called discrete controller synthesis. The discrete

controller synthesis is a generation technique of “correct” behaviour specification based on the two-player

game theory. It takes requirements specified as fluent linear temporal logic (FLTL) and environmental

assumptions specified as labeled transition system (LTS) as inputs and synthesizes a discrete event controller

as an LTS. The synthesis algorithms are based on the two-players game. Hence, the synthesized behaviour

specification is ensured to satisfy the requirements under the environmental assumptions.

37

Figure 24. MTSA Overview

MTSA is an open-source, integrated development tool for discrete controller synthesis. The main features

provided by MTSA are as follows:

• model editor helping developers to specify LTS-based environment model and FLTL-based requirement

model,

• synthesis engine generating a behaviour specification model in LTS, and

• model animator to validate the environment model or the synthesized behaviour specification model.

Figure 25. MTSA Functionalities

Application developers with M-Sec platform can utilize the MTSA to synthesize “secure application

specification” against to business logic vulnerabilities by formalizing business logic vulnerabilities as FLTL

properties. MTSA can synthesize vulnerability-free behaviour specifications with formal guarantees. If

developers correctly implement the synthesized specification as programs that are executable on the M-Sec

platform (such as Node-RED programs), the developed smart city application is also ensured to satisfy the

security requirements under the environment model.

38

3.3 Interactions with other FGs (or assets)

Interaction with Node-RED

Although MTSA automatically synthesizes the “correct” behaviour specification model, developers might

incorrectly implement programs. To avoid such bug injections by human errors, we developed a bridge tool

connecting MTSA and Node-RED. The bridge tool automatically generates a Node-RED program correctly

implementing an LTS-based behaviour specification model synthesized by MTSA.

Figure 26. MTSA-Node-RED Integration via Translation Tool

The translation is not straightforward, because a behaviour specification synthesized by MTSA is LTS, which

represents an event-triggered controller (a kind of state machine) whereas Node-RED program is a kind of

dataflow graph. The translation tool implements some translation patterns to correctly maps application logic

specified in an LTS into a dataflow graph.

39

Figure 27. An Example of LTS-based behavior specification and corresponding Node-RED program

Developers should perform the following procedure to obtain Node-RED program.

• Specify requirements as FLTL and environment assumptions as LTS

• Synthesize behaviour specification model by using MTSA by inputting them. Then, obtain LTS-based

behavior specification

• Translate the LTS-based behavior specification into NodeRED program by using the translation tool.

The generated a Node-RED program can be executed on Node-RED platform orchestrating sensors and

actuators provided by a smart city platform. Thanks to MTSA, the program is ensured to satisfy given security

requirements under the environmental assumptions.

3.4 API

Components in the Development & Security Designing Tools FG are tools and methodologies used by

developers at development time. No APIs are provided.

40

4. Conclusion

This deliverable D4.8 is the final version of the Deliverables related to T4.4. As presented in the original M-Sec

architecture already introduced in previous reports such as Deliverable 3.4, the layer addressed by this task is

the Applications Layer. Two main FGs have been identified and documented in detail namely the IoT

Marketplace FG and the Development & Security Designing Tools FG. Their components, the interactions and

integrations with other components as parts of a unified architecture is also documented in detail.

41

Annex

Figure 28. The M-Sec Architecture (T4.4 FGs in yellow)

