Multi-layered
Security
Technologies

for hyper-connected
smart cities

D4.8 Application Security
March 2021

Grant Agreement No. 814917

Multi-layered Security technologies to ensure hyper-connected
smart cities with Blockchain, BigData, Cloud and loT

Project acronym M-Sec

Deliverable D4.8 Application security

Work Package WP4

Submission date 31 March 2021

Deliverable lead Georgios Palaiokrassas (ICCS)

Authors Georgios Palaiokrassas (ICCS), Kenji Tei (WU), Nobukazu Yoshioka (NII),
Takafumi Komoto (NII), Orfefs Voutyras (ICCS)

Internal reviewer Mathieu Gallissot

Dissemination Level Public

Type of deliverable DEM

St
Wotane (R PITST ey
‘icco

Keio University
D vNU Omos gmmm @ e

WASEDA

University
The M-Sec project is jointly funded by the European Union’s Horizon 2020 research and innovation programme
(contract No 814917) and by the Commissioned Research of National Institute of Information and
Communications Technology (NICT), JAPAN (contract No. 19501).

v0.1

v0.2

v0.3

v0.4

v0.5
v0.6
v0.7

v0.8

v0.9
V0.10

Version history

01 February 2021

02 March 2021

16 March 2021

17 March 2021

18 March 2021
25 March 2021
27 March 2021

29 March 2021

30 March 2021
30 March 2021

Georgios Palaiokrassas (ICCS)
Kenji Tei (WU), Takafumi Komoto (NII),
Nobukazu Yoshioka (NII)

Kenji Tei (WU), Takafumi Komoto (NII),
Nobukazu Yoshioka (NII)

Georgios Palaiokrassas (ICCS)

Kenji Tei (WU)
Georgios Palaiokrassas (ICCS)
Georgios Palaiokrassas (ICCS)

Orfefs Voutyras (ICCS)

Mathieu Gallissot (CEA)
Georgios Palaiokrassas (ICCS)

Full ToC and assignments
Initial inputs to Development
& Designing Tools FG

Updated Section 3

loT Marketplace FG
contribution
Updated Section 3
APIs & Integrations
Additions, corrections
Architecture diagrams
provided, review
Internal Review
Version ready for submission

Table of Contents

LY =T e Yo T o1 1) o 2SRRI 3
L] o] (=l o)l 0] 01 1=T0) £ O TSP UUPTO TSROSO 4
LISt OF TaBIES ..ttt sttt et e bt s b e s ae e s a et et e e be e e bt e s he e sat e et e e bt e beeabeesneeeaneenrean 5
I o) B Y= (U TR 5
(€] Lo T3Y T SRS 7
EXECULIVE SUMIMIAIY ittt e e e et e e e et eeeeeeeeeeeaens 8
N [e Yo [N ot i o] o IO TS UPOUPO U RUSTURTOPROPRRRPRRRN 9
1.1 YooY o Tl ik a1l o Yol U 5 Y=Y o} APPSR 9
1.2 Relation to other work packages and tasks.......c.ueveeiiii i 9
1.3 Relation t0 IM-SEC RISKS ...ccueiiiieiiiiiieiie ettt sttt et e s b st st sabe e b e b e nns 10

D (o) IV F- [] 0] = Tl o C SRS 15
2.1 General Description Of the FG ... e e aree e s st e e s sare e e e eanes 15

D A (o1 1 o o Yo Y T=T o1 (3o) i o o [C TR 15

Lo X MY/ =18 <1 o] = Lol SRS SR 15

2.3 Interactions With Other FGS......eoiiiiiiiiie et et s 31
Interaction with Security and Trusted STOrage FG........ooccciiiieeiiiiee et e e e e e e 32
Interaction with Security City-data ACCESS FGuiiiiiiiiieeiiiee ettt et e e e bee e e arae e e eeareeas 32
Interaction With ENd TO ENA FGooiiiiiiiiiiiicecieeseee ettt s s s e 33

3. Development & Security Designing TOOIS FGcciiiiiiiiiiiiieiiiiiee e cciee et eete e e see e e svee e s e svee e e s saveeas 35
3.1 General Description OF the FG ..ottt e e et e e e tae e e e aae e e eeabbe e e eannaeeaean 35
3.2 CompPonents OF TNE FGu......uuiiiiiieceeeee ettt e et e e et e e e esata e e e e aaaeeeeaasbeeeeannneeaean 35
SECUIE ANAIYSIS TOOI (SAT) wriiiiieiitieeeciee ettt e et e et e et e e bt e e e be e e taeesabee e baeesabeesabasesaeesabesensseesnseesseeesaseean 35
Modal System Transition ANAIYZEr (IMTSA) ...ttt e e et e e e e ete e e e e ba e e e e bee e e eeabaeeeeenreeas 36

33 Interactions With 0ther FGS (OF @SSETS) ...ccuuiiiiiiiiiic ettt et e et e et e e e 38
Interaction With NOAE-REDcoiiiiiiiiiiieiieeeeeestes ettt st e sae e s sn e e n e neens 38

34 LY o] RO 39

N 6014 Tl [V 1Yo PO PSPV PPOPRRPRT 40
Y 1 1= PPN 41

List of Tables

L] o] (i Y Y =Yol I 1 = [Lo IR o =T) £ TN 11

L] o (o A BV o 1T o Y =T g Yo SRR 23

List of Figures

Figure 1. T4.4 and D4.8 relation to other WPS and TasKScccuveiieiiiiieeiiiee ettt eerre e e e aree e eenaee e 9
Figure 2. Overview of the M-Sec IoT Marketplace and its COMPONENTSccevvcuiiiiiiiiiee i 16
Figure 3. Node-Red Flow for the simulation of 10T sensor data.........cccceevviiiiiiiiie e, 17

Figure 4. Graphical User Interface enabling searching of sensors in the smart contracts running on blockchain

... 18
Figure 5. Graphical User Interface of the returned results after the query to the smart contract................... 18
Figure 6. Graphical User Interface of the EXPIOrer.... ... eeie ettt et e e e e bae e e e 19
Figure 7. Available SOXFire sensors registered in 10T Marketplaceccccocvueeeiviiieeiiiieee e 19
Figure 8. Buying data from @ SPECITIC SENSOTciiiiiiiiiiiiieeie ettt et e sab e st e saeeesaree s 20
Figure 9. Browsing in the dedicated interface for recent activity and recent transactions..........cccccccuveeeenneen. 20
Figure 10. Browsing all the purchased data from SENSOIS.cccueiviiiiiriieiiiie e 21

Figure 11. Example of data from sensors located in Japan and arriving to Marketplace through the Bridge.. 21

Figure 12. Interfaces supporting the buyers and seller of media items.........cccccvieievciiei e, 22
Figure 13. M-SeC TOKEN OVEIVIEW PAEE.....uuviieiiiiieeeiiiieeeeiiteeeeiitteeeestteeeesssaesesstaeessssasesasssesesssssesessnsseesssssenes 22
Figure 14. Example call of registerNewSensor function, using POStmanccccceeeviiieeecciiee e, 25
Figure 15.Example call of getAllSensors function, Using POSTMaNcocciiiiiiiiiie et e 26
Figure 16. Example call of getSensorsBySellerPublicKey function, using Postman.........ccccccceeeveieeecciieeecnnen. 27
Figure 17. Example call of changeSensorPublicKey function, using Postman..........cccccceeeeciieeiccieeecciiee e, 28
Figure 18. IoT Marketplace FG With Other FGS.....uii et e e e e e e e e eannnes 32
Figure 19. Example of data flow between Secured and Trusted Storage FG and loT Marketplace FG 32
Figure 20. Overview of SOXFire — Blockchain - [oT Marketplace Bridgecccccuveeeviiieiicciiee e, 33
Figure 21. Technical overview of SOXFire — Blockchain — 10T Marketplace Bridge.........ccccceeeeevccirieeeeeeeeeccinns 33

Figure 22. Example of certificate-based authentication and authorization between an loT device and a backend

... 34
Figure 23. The Security ANAlYSis TOOIcciiiiiiiiiiieee ettt e e et e e e et e e e e e e e e e enbe e e e earaeeeenbaeeeennsenas 36
FIBUIE 24. IMITSA OVEIVIEW ...oiiiiiiiiiiiiiiiicceieeeeeeeeeeee ettt et e e ee et e e ee e e eeee e e e e et e e e e e e et e e et et e eeeeeaeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenne 37
Figure 25. MTSA FUNCHONAITIES ...viiiiiiieiiciee ettt e st e e et e e e sate e e s s abee e s sabeeesenbeeessnarenas 37
Figure 26. MTSA-Node-RED Integration via Translation TOOIccccuiiiiiiiiie it 38
Figure 27. An Example of LTS-based behavior specification and corresponding Node-RED program.............. 39
Figure 28. The M-Sec Architecture (T4.4 FGS iN YEIIOW)cccuvieiiiiieiiiecieecee ettt et e e 41

Glossary

API
SAT

CCD

MTSA
Dx.y
FG
Tx.y
P2pP
WP
uc
JSON

Application Programming Interface
Security Analysis Tool

Companion Database

Model System Transition Analyzer
Deliverable y of WP x

Functional Group

Task y of WP x

Peer-to-peer

Work Package

Use Case

JavaScript Object Notation

Executive Summary

The work described in this deliverable (D4.8) was carried out in the framework of WP4 — “Multi-layered
Security Technologies”, and more specifically, in the framework of T4.4 — “Application Level Security”. The
report presents the updated and final version of the document (the first version being D4.7), providing the
technical details of the Functional Group and Functional Components related to the Task.

All technical partners involved in this task collaborated and developed the appropriate tools to meet the
objectives set out in the project, especially with regard to novel Security aspects in loT contexts. Every partner
focuses on the individual modules that they are responsible for during the implementation phase of WP4 and
supports the integration activities of WP2 while following the common Architecture framework set by WP3 in
D3.4.

All of the updated versions of the WP4 technical deliverables (D4.2, D4.4, D4.6, D4.8, D4.10) follow the same
approach and have the same structure. Section 1 provides an introduction to the scope of this document and
its relation with other WPs and Tasks. Sections 2 and 3, which aggregate all the main outcomes of the Task,
present the FG and the Functional Components covered by the Task, by providing an extensive description of
the corresponding functionalities, and details related to the API of the FGs and their interactions with other
FGs of the M-Sec solution. Finally, Section 4 concludes the document.

Regarding the differences between ‘D4.7 M-Sec Application Level Security — first version’ and ‘D4.8 M-Sec
Application Level Security — final version’:

Section 1 has remained more or less the same but includes an extra subsection identifying the M-Sec Risks
linked to this specific Task.

Sections 2 and 3 as a whole provides a more integrated view of the Components, as it focuses on their
presentation from an FG perspective. Components have been moved from/to other deliverables
accordingly.

Section 4 corresponds to Section 4 of the previous version of the document.

All'in all, the deliverable is considered to have provided all of the information required to expose the M-Sec
technical solutions related to T4.4 as well as the results of the integration and demonstration-related activities.

1. Introduction

1.1 Scope of the document

The main focus of this task is to establish engineering foundations to support the development of secure smart
city applications on the top of M-Sec platform. Security requirements for smart city applications should be
elicited by identifying security goals, assets to be protected, and threats. In addition, protection mechanisms
mitigating the threats should be designed and implemented in applications. M-Sec provides methodologies
and tools to develop smart city applications in order to support developers of smart city applications

Following the final version of the architecture presented in Deliverable 3.4, the components about to be
discussed in this report are part of the so-called loT Marketplace Functional Group (FG) and the Development
& Security Designing Tools FG.

Allin all, this task has as its main objective the definition and ulterior implementation of the M-Sec application
security layer and thus starts with the services it comprises, which have evolved from the initial description in
Deliverable 4.7, in parallel to the execution of Stage 1 of the different pilots.

This document addresses the main objectives of this task establishing the M-Sec components strengthening
the application layer, which will become one of the security layers in the overall Multi-layer Security (M-Sec)
platform, providing the needed security and reliability for smart city applications.

1.2 Relation to other work packages and tasks
The following figure summarises the relations of this deliverable (and the corresponding task) to other tasks

and WPs.

Input from Output to

—

WP4

D4.8
| T4.4 - Application T2.3 — Overall
= Level Security > integration
and user level I
-1, T4.2,
.3, T4.

1

|

1

|

I

7 |
requirements |
1

I

. D3.2, D3.5, D3.7 T4.1,T4.2, |

T3.2 - M-Sec T3.3 — Risks and T4.3,T45 1
Architecture Security Elements :

1

o

1

Figure 1. T4.4 and D4.8 relation to other WPs and Tasks

WP2

T2.1 -
Use Cases
description D2.1, D2.3

T2.2 —
Pilots definition,

setup and citizen’s
involvement

W P3 T3.1 - System level

The work done in Task 4.4 is directly related to WP3. T4.4 receives input system and user requirements from
T3.1 and Risks- and Threats-related information from T3.3. Moreover, it follows the common Architectural
framework that has been identified in T3.2 for the coordination of all the technical activities. Similarly, the
Task receives input from WP2 related to the coverage of the needs of the UCs and the pilots.

Within this very same work package, Task 4.4 is related to Task 4.1 and Task 4.2, where the loT security layer
and cloud/data security layer are discussed, respectively. Smart city applications are designed and
implemented by using APl provided by those layers. Besides, it is also related to Task 4.3 and the relation to
all the other WP4 tasks is documented with the direct or indirect integration with other FGs and their
components.

Finally, the results of this report are directly provided as input to T2.3 which is focusing on the overall
integration activities. Together with the other final deliverables of WP4, D4.2 provides all the information and
functionalities required for an integrated security solution.

The complete list of potential risks and threats that may affect M-Sec’s |oT layer can be checked in Table 1, as
extracted from Task 3.3.

All of these threats are of Type “Cloud”, and Sub-Type “Data Access”, “Storage” or “Management”. Specific
interfaces are provided in D3.5.

10

Table 1: M-Sec T4.4 risks and threats

Thr.App.

Thr.App.

Thr.App.

Thr.App.

Libraries and modules on which the S,D, T
application is reliant, can be
compromised or replaced by malicious
versions. (they can be affected by the
same threats as the application itself)
Other malicious agents can issue
requests and data on behalf of the
application.

S(e.g. IP
Spoofing)

Malicious agents may have read access S, |
to the data the application is
processing, and results.

Malicious agents may have write access T
to the data the application is

processing. Being able to change it and
produce unpredicted states

Connected Care

Park Guide,
Connected Care,
Smile City Report

Connected Care

All Use
Cases

Use Case
2

Use Case
1, Use
Case 2

Use Case
2

15

15

15

Vulnerability Assessment

Companion DB may mitigate
some of the risks; the
application will not know the
keys, only the user will know
it. Authentication
mechanism.
Companion DB may mitigate
some of the risks. Only
authorized agents can access
M-Sec sensitive data. It is
encrypted/decrypted
through the Companion DB.
Authentication mechanism.
With the Companion DB,
only authorized agents can
access M-Sec sensitive data.
It is encrypted/decrypted
through the Companion DB.
Authentication mechanism.

11 @

Thr.App.

Thr.App.

Thr.App.

Thr.App.

Thr.App.

Thr.App.

10

Data sources may be replaced, feeding
erroneous or malicious data into the
system workflow. E.g: Buffer overflow;
cross-site scripting; SQL injection;
canonicalization

Compiled, binaries or bytecode of the
application may be corrupted or
maliciously altered for execution.

Legit requests may have undesirable
effects.

The user may be convinced to perform
actions that expose their data, or the
application workflow (Social
Engineering)

Stored Data may be compromised.
Either the cryptographic keys are not
secure enough; the algorithms, the
storage container is compromised or
there might be some issue in the whole
workflow.

The user account is compromised.
Either because the user has released,
forgot, or shared her/his credentials, or
because the account is meant to be
shared amongst several users.

E, T

T,D

Connected Care,
Smile City Report

Park Guide,
Connected Care,
Smile City Report

Park Guide, Smile
City Report

Use Case
2

All Use
Cases

All Use
Cases
All Use
Cases

Use Case
1, Use
Case 2

All Use
Cases

15

15

15

With the Companion
Database, the data is
encrypted and linked to the
blockchain, so it cannot be
tampering. Authentication
mechanism.
Memory Protection

Vulnerability Assessment

Security Learning

With the Companion
Database, the storage of the
sensitive dat is in a different

database, so they should
compromise at least the two
databases. Vulnerability
Assessment
Log Mechanism

12 @

Thr.App.

11

Thr.App.

12

Thr.App.

13

Thr.App.

14

Thr.App.

15

Thr.App.

16

The application may be compromised,
because there is some extreme cases
that are not considered, or certain
assumptions make it susceptible to get
to unstable states
The application (or platform) does not
provide log of the transactions and/or
execution trace. Leaving potential
attacks un accounted.

The application uses un registered
communications (not known to the
underlying platform) or without relation
to the functioning of the app itself.
The application does not use the
appropriate authorization mechanisms,
or these mechanisms can be easily
circumvented

The application does not use the
appropriate authentication
mechanisms, or these mechanisms can
be compromised (e.g.: key logger, un
secured password storage or
transmission, etc.)
Vulnerabilities-flaws in smart contracts

T,R,1,D

MTSA

Park Guide,
Connected Care,
Smile City Report

Connected Care

Blockchain app /
Smart contract

All Use
Cases

Use Case
1, Use
Case 2

All Use

Cases

Use Case
2

All Use
Cases

All Use
Cases

15

Vulnerability Assessment

The Companion DB provides
some logs of interactions, but
it is not its main purpose.
Vulnerability assessment.
Vulnerability Assessment

In the backend site, the
Companion DB uses a smart
contract in order to grant
access to the sensitive data.
Vulnerability assessment.
Vulnerability Assessment

Flaws in smart contracts can
cause unforeseen security
breaches. Thorough lab
testing before going into

13 @

Thr.App.

17

Thr.App.

18

Thr.App.

19

Thr.App.

20

Thr.App.

21

Thr.App.

22

Under-optimized smart contracts

Transaction privacy leakage

Misunderstanding of the agreement of
applications.

Personal information and facial images
are mistakenly uploaded in the
marketplace and traded.
Malicious agents may make fake
transactions.

Malicious agents may upload face data.

T,R,I,D

T,R,I,D

Blockchain app /
Smart contract

Blockchain app /
Smart contract

All apps

loT Marketplace

loT Marketplace

loT Marketplace

All Use
Cases

All Use
Cases

All Use
Cases
Use case
5

Use case
5
Use case
5

15

15

15

production. Continous code
review.

Dead code, loop fusion,
repeated computation can
cause denial of service on the
long run. Thorough lab
testing before going into
production. Continous code
review.

Once identity is revealed the
whole history of transactions
is exposed. Thorough lab
testing before going into
production. Continous code
review.
Agreement should be easy
and clear to understand.
Need a check mechanism

Ensure by blockchain
technology
Ensure by blockchain
technology

14 @

2. loT Marketplace FG

The loT Marketplace FG consists of two main components: the loT Marketplace and the Mobile Wallet. These
components are integrated with other FGs and directly or indirectly communicate with components from
other FGs. For the scope of this technical document, only the core M-Sec components are discussed, and as
such, the main focus will be on the loT Marketplace.

In the following section, the components of the FG are described in detail. Section 2.3 presents the interactions
of these components with components of other M-Sec FGs. Finally, the Annex presents the position of the FG
within the whole M-Sec Architecture.

The goal is to create decentralized loT ecosystems and validate their viability and sustainability. In this
direction, we define and implement a novel marketplace where smart objects can exchange information,
energy, and services through the use of virtual currencies allowing the real-time matching of supply and
demand enabling the creation of liquid markets with profitable business models of the loT stakeholders. In
this section, we cover the basic technical implementation details of the M-Sec marketplace: market
participants, from loT devices to humans using mobile applications are able to exchange data and value
through the M-Sec blockchain implementation.

15

General Description of the Prototype

B =

Node-Red

Service

5:contracts
and payment

Fujisawa city Santander

. ‘ 3 4
(Ter/\ 2:seealldata

: Buyer |« 3:retrieve data descripti Sﬁ E (Liregister sensor Data Provider/ F -
‘ Front 4:buy data — Seller (Sensor et :

End 5:succsefull paymen s-: 2 owner)
& passcode 3

AN\/Z&
Smart Contracts running on
Quorum Blockchain Platform &

communicate with each other

8:send data

Figure 2. Overview of the M-Sec loT Marketplace and its components

In the previous Figure 2, we can see an overview of the developed marketplace and its components, explained

in detail through a specific example use of it.

1.

The owner of a sensor/data source who wishes to make his data available for purchase or exchange
registers himself to the dedicated created smart contract providing information about the type of the
data, their frequency, the price, the location, etc.

A User of the M-Sec Platform who acts here as a potential buyer using our developed front end can
see all the available sensors and their data

Upon finding some interesting data he/she can retrieve additional detailed descriptions about them
and then

Buy the data of interest using M-Sec Tokens, which is a cryptocurrency in the form of a smart contract
running in on blockchain presented in the previous section

The deployed smart contracts communicate with each other to verify the sufficient funds of the buyer
and complete the purchase by transferring funds from the balance of the buyer to the one of the data
owner. The developed Node-Red flows also assist in this process connecting the different components
of the system

In the case of successful payment, when the buyer has sufficient funds and after the tokens are
transferred, a passcode is returned to the buyer necessary for accessing the purchased data

The buyer communicates with the platform and the API of the data owner and using the transactions
details requests the data

The desired data is returned to the buyer in a predefined format such as JSON

16

Components

Component Module 1: Node-Red Flows

In order to orchestrate the different components and services we have used Node-Red and have developed
several flows. Node-Red is a powerful visual tool for wiring together hardware devices, APIs, and web-services,
create flows that connect distributed components into a common loT application?.

We developed different flows for the different parts of the loT Marketplace.

During the development of the system, we simulated the loT weather sensors provided by public APIs and for
this simulation, we used an API provided by Dark Sky2. Using Node-RED features we created flows that request
current weather data for several locations from the Dark Sky APl and then save these data (air temperature,
relative humidity, pressure, visibility, wind speed and direction, sky cloud coverage, dew point, UV radiation,
and the columnar density of total atmospheric ozone layer) into a local database. We also exposed a RESTful
APl in order to serve the data to the users when requested. When a request is received, the APl key is checked.
If it is correct, the data responding to the specified time intervals is retrieved from the database and then sent
to the requester.

Transform data before DB | s query create tables (darksky) ——
Output from mysql

timestamp —— create tables (darksky) (=

@ connected
» timestamp = —— empty tables (darksky) —_—— Output from mysql
@

am Output from mysql

et Output from mysql

| timestamp —— drop tables (darksky) —

Figure 3. Node-Red Flow for the simulation of IoT sensor data

Component Module 2: Web Application

This web application provides interfaces between the users and the blockchain. It provides functionalities
helping users interact with the smart contracts deployed on Quorum Blockchain and access data they have
bought. It also allows sending transactions to and reading data of transactions and smart contracts. It also
“protects” users from misreading or mistyping info when sending a transaction.

We have used different languages and technologies to create these interfaces such as JavaScript, Bootstrap,
HTML, jQuery, Nodejs. Some of the developed interfaces are described below with screenshots and details.
We have used Web3.js to interact with the deployed smart contracts.

1

2 The Dark Sky Company, LLC, "Dark Sky," The Dark Sky Company, LLC, [Online]. Available:
17

https://nodered.org/docs/
https://darksky.net/dev

The user searches in all the available sensors registered in the Smart Contracts the sensors of interest
specifying details in the corresponding fields such as the location, the type the data (temperature, starting
date and time, frequency, etc.), as shown in Figure 4.

All the available sensors

Show Search

Search by location

Hide Map

s e T g S RN
Seller Sensor ID Sensor Type Price (M-Sec Tokens) First data at Frequency Map Buy Data

0xf0f1b4ae53ae6079bf3c8dad7119cf48893b7c3c 1 temperature 0.001 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -
0xf0f1b4ae53ae6079bf3c8dag7119cf48893b7c3c 2 humidity 0.001 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -
0xf0f1b4ae53ae6079bf3c8dag7119cf48893b7c3c 3 pressure 0.002 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -
0xf0f1b4ae53ae6079bf3c8da97119cf48893b7c3c 4 visibility 0.006 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -

© 2019 M-sec Project

Figure 4. Graphical User Interface enabling searching of sensors in the smart contracts running on blockchain

After specifying all the required information, a query is submitted to the smart contracts running on the
Quorum blockchain and a list of all the available sensors is returned with information of the address of the
data owner, the sensor type (temperature, pressure, visibility, etc.), the frequency, a link opening a map and
the option for the user to buy these data using M-Sec Tokens, as shown in Figure 5.

Il the available sensors

Sensor Price
Seller D SensorType (NTUATok) First data at Frequency Map Buy Data
0x3898843762dcf4fBcoae08f93e4355idd4ed7dal 1 temperature 0.001 Wed Nov 22 2017 2 - Buy Data
17:57:35 GMT+0200
(GTB Standard Time)
0x3898843762dcf4f8cOac08f03e4355fddded7dal 2 humidity 0001 -
0x3898843762dcf4{8c0ae0893e4355iddded7daf 3 pressure 0002 - Buy Dota

0x3898843762dcf4f8c0ae08f93e4355idd4ed7dal 4 visibility 0.006 Wed Nov 22 2017 2 - Buy Data
17:57:35 GMT+0200

(GTB Standard Time)

Figure 5. Graphical User Interface of the returned results after the query to the smart contract

An overview of the blockchain and the transactions included in each block is provided in our developed
Explorer interface, as shown in Figure 6. The user is able to search for specific blocks, transactions, users,
contracts and see the related activity.

18

®

EII the transactions

Select TxHash

Select block No

Select Contract

Leg T
Index Index Tx Hash

0 '] 0x7495f68c0235(77110d953161ea04d 11cbd983c1a86d598a8e2a5ad2b3cfPac
° ° 07 1fdc3eatbefbceto0es2c0051925 26259911 24000230104#059515036 769
0 L] 0x0b68fec2beb3dcIeTdccBedccf099f3b41484ed5¢336406076ca836634573a22
) L] 0:88c5548cc05¢870a08c 22229 1255455432903 11ccb7f5cbbcS0cbdd0fdScd

Hash

Broker v

Search transactions

Block Hash

0xfAbT02606205c2clB6fae6c00ebedBee36iccde5998833681baase699a1bab2
One97d520002¢4941866e102ef2108473270411eeb62687524<a842fc3d 100656

0x5ab708408359d0042160e421ca5f335 JebTd2ef3d31e0806e5090D55 Thc392d2

OxfcaTe: SfclelSefSe2cTb59af2053

Block
Mumber

4

Contract Address (Contract Name)

0x3162447A38985e24d38<13067 1818206 1de56c
(Broker)

0x3162447 31389050240 3013067 16128206 1de56¢c
(Broker)

0x31624474f3898524d38< 130671818206 1de56c
(Broker)

0x31624474f3898524d38<f3067 15138206 1de56c
(Broker)

Type Event
mined SensorCrested
mined SensorCreated
mined SensorCreated
mined SensorCrested

Figure 6. Graphical User Interface of the Explorer

To facilitate the different use cases (mainly use case 3, use case 4, and use case 5) and end-users of the
pilots, we implemented the “SOXFire — Blockchain — loT Marketplace Bridge”, which is described in detail in
the next section. Through this bridge, data are arriving from sensors, which are registered to the loT
Marketplace and some indicative figures are shown below.

e e e e

All the available sensors

Show Search

Seller

0Oxabb10809211452d29438d2045c88396af9ce069

g\bbl(}&OQZﬂASZdZSMSBd2045c88396a19ce()69

© 2020 M-sec Project:
MSec

Price
Sensor Sensor (M-Sec First data
D Sensor Name Type Tokens) at Frequency Latitude Longtitude
14 greenblue_sensor_301003 muitiple 1 1597336733 60 35.64 139.82
13 greenblue_sensor_301002 multiple 12 1597336733 60 35.335665324 139.485664724

Figure 7. Available SOXFire sensors registered in loT Marketplace

N
B
A o

Toms of se © 19873020 R

Map

Buy Data

Buy Data

@ BuyData

<« c O

(o)

Sensor Info

Seller Sensor ID Sensor Name Sensor Type Price (MSecToken) startTime
0Oxabb108092ff452d29f438d2045c88396af9ce069 1 greenblue_sensor_200007 multiple 3 1600245276
From:
|mm/ddryyyy (]
AT P Minutes: Seconds:
S MTWTFES
123 a8
678 9 10nmn
131405 16 17 1819
20228528
%% % Minutes: Seconds:
Price:

Confirm

Figure 8. Buying data from a specific sensor

Frequency

60

Longitude

139.42613199999982

Latitude

35.38738346666667

All the transactions

transactionid

10
35
36
uz
18

199

© 2020 M-sec Project:

buyer seller sensorid name

SRS = B
1eName

testl ame

Ox0 TS5 2157564 b {3 ML (Y & Ide7dEambe6$16acoli D ARz ca >
S =T N anl f“_ﬂ*_ﬂ_
OXOMSMSMGEOBE 8E76585arcA2a T (i Ade7daBEche269B6aco02abd ec%ﬂﬂ:cbg E T

0x036b4521119569730b61 D3eZ6edl [R5e5a7cd2a || 0x57 de7dAR8cbe263h6aci02ab99e3ecdddcca3?h . 1
~A e e= A A .-~ ~ —~ A~ -
-

=l o
—_— - — N~
0X036D45211 r56 W6) e B e St A 057 At b2 et c e e B i e B> ' 1 T estiveine

0x036b4521119569730b6{303e76e8e785e5a7c42a Ox57dde7d: 02ab99e: ca32b 1 testName
0x036b4521119569730b61303e76e8e785e5a7c42a Ox57dde7: 02ab99e: 32b 1 testName
0x036b4521119569730b61303e76e8e785e5a7c42a 0x57dde7d468cbe269b6ac902ab99e3ecdddcca3zb 9 testName
0x036b4521119569730b61303e76e8e785e5a7c42a 0x57dde7d468cbe269b6ac902abg9e3ecdddcca3zb 9 testName
0x036b4521119569730b61303e76e8e785e5a7c42a 0xS57dde I02ab99%! dcca32b 6 testName
0x036b4521119569730b61303e76e8e785e5a7c42a 0x57dde I02ab99%: dcca32b 6 testName
0x036b4521119569730b61303e76e8e785e5a7c42a 0x57dde7d: 02ab9%: 4cca32b 11 testName
0x036b4521119569730b61303e76e8e785e5a7c42a 0x57dde7d: 02abg9e 4cca32b 11 testName

0x036h4521119569730b61303e76e8e785e5a7c42a Oxabb10809211452d291438d2045¢88396af9ce069 1u greenblue_sensor_200007

~

starttime

= LERBT & S8R

1597335733

1597335733

1597335733

1597335733

1597335733

1597335733

1597335733

1597335733

1597335733

totime

= i—
- - = D e -

15 7335723
- - -

15972387 3

~—
1597338733
1597338733
1597338733
1597338733
1597338733
1597338733
1597338733
1597338733

1597338733

amount
/A 207=9000000000000
0000000000000

10000000000000000000
_—

S~
o o/ L Lshsanrad S osbeams e &=4000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

10000000000000000000

Figure 9. Browsing in the dedicated interface for recent activity and recent transactions

20

blocl

25

26

43

44

a7

48

49

@ Home

Figure 10. Browsing all the purchased data from sensors.

<
un greenblue_sensor_200007
1 greenblue_sensor_200007
1 greenblue_sensor_200007
12 greenbiue_sensor_200007
u greenblue_sensor_200007
12 greenblue_sensor_301001
n greenblue_sensor_200007
1 testName

13 greenblue_sensor_200007
13 greenblue_sensor_301002
14 greenblue_sensor_301003
13 greenblue_sensor_200007
@ © 2020 M-sec prgiggpmue_sensor;200007
-

(o)

My Purchased Data

&

TOPIC_ID

greenblue_sensor_200007 temperaturel

[Y ==
greenblue_sensor_200C 7 -
—_—

_— —
= ompefie i1
~—- - -

TRANSDUCER_ID

~

~

1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733
1597335733 1597338733

TIMESTAMP

2020-09-16T07:47:58.000Z

X Erismralage o051
\./--Q\:J Lt 4 1| \./v.\:/--

10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000
10000000000000000000

10000000000000000000

PUB_TIMESTAMP

2020-09-16T16:47:00.332651+09:00

& n

~
6¢ —

1:48:0 37

58

60

61

73

82

83

88

74

84

85

75

51

-
4

See Data

(7
@
@©

See D

ata

See Data

See Data

See Data
¥

ee Data

See Data

See Data

See Data

(7}

(7
® @
@ ®
5 7]

See Data

VALUE

31.311864406779627
™ ~ ~

~
-
| | 1\ 96 |(w==1498

-

greenblue_sensor_200007 temperaturel 2020-09-16T07:49:03.000Z 2020-09-16T16:49:00.252265+09.00 31.26833333333333
greenblue_sensor_200007 temperaturel T Y T P2RoRENo7:5q Z o= o4 TS TR SR OTE i S P TOSREN 31.215789473684232
e 8B EYEGEE NS GIJIGE =S
greenblue_sensor_200007 temperaturel 2020-09-16T07:51:03.000Z 2020-09-¥T716:51:00.350014+09:00 31.205000000000027
greenblue_sensor_200007 temperaturel 2020-09-16T07:52:04.000Z 2020-09-16T16:52:01.388370+09.00 31.196666666666694
greenblue_sensor_200007 temperaturel 2020-09-16T07:53:03.000Z 2020-09-16T16:53:00.358001+09:00 31.180000000000017
greenblue_sensor_200007 temperaturel 2020-09-16T07:54:03.000Z 2020-09-16T16:54:00.454404+09.00 31.165000000000006
greenblue_sensor_200007 temperaturel 2020-09-16T07:56:03.000Z 2020-09-16T16:56:00.218257+09:00 31.16
greenblue_sensor_200007 temperaturel 2020-09-16T07:57:03.000Z 2020-09-16T16:57:00.257921+09:00 31.146666666666658
greenblue_sensor_200007 temperaturel 2020-09-16T07:58:03.000Z 2020-09-16T16:58:00.270865+09.00 31.13999999999999
greenblue_sensor_200007 temperaturel 2020-09-16T07:59:04.000Z 2020-09-16T716:59:00.853689+09.00 31.11538461538462
greenblue_sensor_200007 temperaturel 2020-09-16T08:00:04.000Z 2020-09-16T717:00:00.317693+09:00 31.11538461538462
@elmmwwewggu temperaturel 2020-09-16708:01:03.000Z 2020-09-16T17:01:00.403266+09.00 31.09999999999999
Mg

Figure 11. Example of data from sensors located in Japan and arriving to Marketplace through the Bridge

21

@ BuyMedia items x +

< C O O localhost
Buy Items
Sender Receiver Item Uri

Uploaded Items

Owner URI
30 0x57dde7d468cbe269b6ac902ab99e3ecdd4cca32b

31 0xabb108092ff452d29f438d2045c88396af9ce069
Accounts & Tokens

Account

0x036b452f119569730b61303e76e8e785e5a7c42a

0x57dde7d468ch 2ab99: 32b

’:ﬂbh108092H452d291438(12045(:88356&""_?069

~ =~ ~n

4 =) =
- = -
@ © 2020 M-sec Project —-dbu-acl Aa\.—etbzaatcuo-acen\/-

urll

urll

A RA—A° RP -

Item Price
:
Price Tag Info Use
1 themel infol m
1 themel Dinner m
Tokens Use
99999385 m
120 m
g1 g
= (A - =~ AA

(A1 —1 8§

Figure 12. Interfaces supporting the buyers and seller of media items

-

Tokens

Address Balance Copy to

1 0x036b452119569730061303eT6eBeTa5e5a7c42a 99999385 Sender

2 Ox57dde7d468che269b6ac902ab99%e3ecdddccai2b 120 Sender WEeCd

3 0xabb1080921f452d291438d2045¢88396ai9ce069 an Sender

4 0x67b7a943dea30afc0701633aalc408idh039ceT1 123 el Receiver

5 0x0d84eal55ad01a3cb6c9caes5162e0cebcad0062 0 Sender

6 0x09cB46bb47ada291ee2d4ib2137554719c02aT0c 0 Sender

7 0x004531fc7af78bc2ddc332107d6d044cice35ec2 0 Sender

8 0x3011df9actc2cB0923c666e7a0l3ec0213b714910 o (T Receiver

9 0x123c47042a2e936052523a3bb4079450e1859¢1 0 Sender

10 0x4697aB28114d4671c9eBbd2e6c1394043c560264 0 Sender

M-Sac Token averview naae

@ © 2020 M-sec Project: 2 o = J\“—:_— B U __\:_-JC_‘W_ u_/_-.— | | \—fér—”\:: \ - & C

Mg

Figure 13. M-Sec Token overview page

22

API: Blockchain framework exposed methods

In order to allow communication and integration with other components, services, assets, several methods
were developed. These methods are exposed via a RESTful API, while respective clients have been developed
to facilitate the integration process and documentation with examples and indicative architecture figures and
snippets. In the table that follows, some of the methods are presented, while we could note that part of them
have a final form, while others are still updated to facilitate the integration with other assets, better support
the use cases based on the feedback or improve security aspects of the provided services.

Method “registerNewSensor”

This is a POSTmethod, which
Registers a new sensor
belonging to a specific user.
Price is described in M-Sec

String publicKey, int tokens, timestamp in Unix
sensorType, double {” s Ul timestamp, and number of
i message”:” Successfu
registerNewSensor price, int startTime, 1¢5538 o ”y measurements is provided per
registered sensor” , “id”:
0 double frequency, int) houre.g. 6

double lat, double long, measurements/hour. The URL

String urlOfData of the data is the location,

where the buyer can find
them, it could be any kind of
database: SQL, MongoDB,
IPFS, etc

Regarding the sensor type, the possible values are described in the table that follows:

Table 2. Types of sensors

Code Type of Sensor Proposed unit of measurement
1 Temperature °C

2 Relative humidity %

3 Pressure Hectopascal — hPa

23

Visibility

Wind speed and direction

Sky cloud coverage

Dew point

Solar Radiation

UV index

Columnar density of
atmospheric ozone layer

Motion sensors

Door window

Smart Plug

Smoke

Mattress

total

km

m/s

%

°C

watt/m?

Oto11

Dobson — DU

Int [O,..]

Int [O,..]

Volts

Bool (on/off)

Bool (on/off)

New

import

Q

History Collections

+ New Collection

Marketplace

changeSensorPublickey

changeSens

Q Find and Replace

Runner

APIs

f=] console

a8 My Workspace v

& Invite

createNewAccount registerNewSensor o + e No Envirenment ” @ #
» registerNewSensor Examples 0 v
POST ¥ http://localhost:5555/registerNewSensor Save v
Params Authorization Headers (8) Body ® Pre-request Script Tests settings Cookies Code
none form-data @ x-www-form-urlencoded raw binary GraphQL
KEY VALUE DESCRIPTION ese Bulk Edit
publickey 0xa9DFh608982d9a285cABESCE6FCa9879F2703
sensorType 8
price 51
startTime 1597331733
frequency 3
lat 59
long 61

urlofpata

Body Cookies Headers (5) TestResults

Pretty Raw Preview Visualize

1 {"message":"Successfully registerd sensor"}

http://testmsec

) 2000K 460ms 198B Save Response v

Text ¥ = L e

H & O

< Bootcamp ED

Figure 14. Example call of registerNewSensor function, using Postman

Method “getAllSensors”

getAllSensors()

[{"sensorid":,
"seller":,
"sensortype":,

"price":,

n H n
starttime":,

"frequency":,
This is a GET method, which

“latitude™: ™", returns details about all the

"longtitude": ", sensors registered by all

users/ smart cities
"theur

"
"logindex":,
"transactionindex":,
"transactionhash":,

"blocknumber":,

"blockhash": ""

25

1l

28 My Workspace ~ &, Invite

Q | No Environment - o

History Collections APls examples [§] *

+ New Collection
Ger « | tpocaostssssigertsensors m s s

Marketplace

* .
Params B i T i
GET suery Param
o KEY VALUE DESCRIPTION
Body I e -
Pretty Raw Preview visualize - > mQ
10 —
2 {
3 "sensorid®: 1,
GET 4 "seller”: "8xaddfb6e8982d9a285caBes5c66fca9aTaf2703515",
5 “sensortype®: 1,
] .
9 40
18 Hil- -
11 “testurl2”,
12 “: 0,
13 “transactionindex": @,
14 “transactionhash®: "8x87c¢5b571eb9flea513605a2a35ed089d67c011042422d2611b721d16d653d423" ,
15 “blocknumber=: 218,
16 "blockhash™: "@x48b57e860fbeb8bc2301537de0421a173¢84cbc3b71d7bbd2d187634514d9486"
7 ¥,
18 {
13 "sensorid®: 2,
20 "seller”: "oxc90cfsbdabs4d6967dcas21117593635bc142f46",
21 "sensortype”: 1,
22 "price”: "1%,
23 "starttime": 1234,
24 "frequency™: 4,

Bootcamp

Figure 15.Example call of getAllSensors function, using Postman

Method “getSensorsBySellerPublicKey”

[{"sensorid":,

"seller":,
This is a GET method,

"sensortype":, . .
getSensorsBySellerPublicKey which returns details about
- "price":, all the sensors registered
() -
e b-y-a specific users/ smart
cities
"frequency":,

"latitude": "",

26

nn
’

"longtitude":

"theur ,
"logindex":,
"transactionindex":,
"transactionhash":,
"blocknumber": 210,

"blockhash": "
1]

File Edit View Help

New. mport 2% My Workspace + &, Invite
Q -
createNewA. .. registerNew... ® GET getAllSensors @ [DELETED] U, GET getSensorsBy.. @ 4 eee
History Collections APls » getsensorsByPublickey
+ New Collection
GET v httpi//localhost:5555/getSensorsByPublickey?publickey=0x3e83e2289bf4304570def109c31ed87c5125d360
_ Marketplace
ore Params @ Authorization Headers (6) Body Prere Settings
GET Query Params
GET
KEY VALUE DESCRIPTION
publickey 0x3e83e2289hf4304570def109c31ed87¢5125d360
Body Cookies Headers (7) TestResults [£)) 0K
Pretty Raw Preview Visualize v =
GET
L |
GET 2 {
3 "sensorid”: 18,
4 "seller": "0x3e83e2289bf4304570def109c31ed87c5125d360",
5 "sensortype": 1,
6 "price": "15000000000000080000",
7 "starttime": 5153,
8 "frequency": 5,
9 "latitude": "58",
10 "longtitude": "55",
11 "theurl": "url
12 "logindex"
13 "transactionindex": 0,
14 "transactionhash": "@xleac5af266ca68c361768abc4758f8612a4e88777301cf8cd6f4e7fcasddbod3",
15 "blocknumber”: 219,
16 "blockhash": "Bxee9f75724393a7e497244a52¢e703927428d02d6881b18dacT627a513d11de51"
17 |
18
19 "sensorid": 12,
20 "seller": "Ox3e83e2289bf4304570defl09c31ed87c5125d360",
21 "sensortype": 1,
22 "price": "15".
Q Find and Replace [console

Figure 16. Example call of getSensorsBySellerPublicKey function,

Method “changeSensorPublicKey”

Postman

Time: 25 ms

No Environment v o &%

Examples 0 v

143KB Save Response ¥

mQ

O & @

S Bootcamp

using Postman

changeSensorPublicKey()

String publicKey,
sensorlD, String

n.onn
]

“message”:"success”}

“sensor

publicKey

This is a POST method,
which changes the owner of
a sensor

27

New Import Runner [28 My Workspace v &, Invite
1
D No Environment
createN... register... @ GET getAllSen... ® GET getSenso... @ change.. X 4 ees
o
o » changeSensorPublicKey Examples 0
]
POST ¥ httpi//localhost:5555/changeSensorPublicKey
Params Authorization Headers (8) Body ® Pre-request Script Tests Settings
none form-data ® x-www-form-urlencoded raw binary GraphQL
KEY VALUE DESCRIPTION
publicKey 0xa9DFb608982d9a285cABESC66FCa9879F270351%
sensoriD 15
Body Cookies Headers (5) TestResults @ 200 OK Time: 8 ms
Pretty Raw Preview Visualize Text « 5
1 {"sensor":"15","message”:"success"}
Q Find and Replace] Console

= Bootcamp

2: 190 B

Save Response ¥

mQ
[

O HEa @

Figure 17. Example call of changeSensorPublicKey function, using Postman

Method “changeSensorPrice”

changeSensorPrice ()

String publicKey, {“sensor”:””,
sensorID, newPrice “message”:”success”

This is a POST method,
which changes the price of
data for a sensor

Method “changeSensorUrl”

28

changeSensorUrl()

String publicKey,
sensorlD, newUrl

n.onn

{“sensor”:””,

”.n

“message”:"”success”}

This is a POST method,
which changes the url of
data for a sensor

Method “purchaseMedialtem”

purchaseMedialtem()

String publicKey, int
photold

json

This is a POST method, for
purchasing media items

Method “getPurchasedPhotos”

getPurchasedPhotos ()

String publicKey

”n.nn

{“sensor”:"”,

n.on

“message”:”success”}

This is a GET method, which
changes the url of data for a
sensor

Method “browsePhotos”

browsePhotos ()

filters [location, time]

json (details, urls to IPFS)

This is a GET method, which
returns media items or
photos with specific filters

Package Information & Installation Instructions

Required Tools and dependencies

The following tools and dependencies are required to install and use the loT Marketplace:

NodeRed
Nodejs

29

MySQL
Ethereum/Quorum Blockchain
Nodejs and Javascript

Install NodeRed

e Node-Red: Node-RED is a powerful visual tool for wiring together hardware devices, APls and web-
services, create flows and connect distributed components into a common loT application
[https://nodered.org/].

o Installing Node-Red: The easiest way to install Node-RED is to use the node package manager,
npm, which comes with Node.js [https://nodered.org/docs/getting-started/installation].
Installing as a global module adds the command “node-red” to your system path:

= For Ubuntu:
e sudo npm install -g --unsafe-perm node-red

= For Windows, execute CMD with administrator rights and then execute:
e npm install -g --unsafe-perm node-red

o Version: We have installed Node-Red v0.17.5

o Running: after installing Node-Red as a global npm package, open a terminal and run the
“node-red” command. You can then access the Node-RED editor by pointing your browser at:
http://localhost:1880

o After accessing the editor, you have to left-click on the menu button (three lines on the top
right corner), then click on manage palette, switch to the install tab and search for the node-
red-contrib-neo4j package and install it. This will add the node required by our flows ensuring
the dependency.

Install Nodejs
¢ Node.js: Before installing Node-Red, a Node.js installation is required. We have installed Node.js
version v8.9.3.

o On Ubuntu machines we have to run the following commands:
= sudo apt-get update
= sudo apt-get upgrade
= sudo apt-get install node.js -y
= sudo apt-get install npm -y

o On Windows machines, we can download the appropriate installer from

https://nodejs.org/en/download and execute it.

Install MySQL

e We used the MariaDB SQL, but any other SQL relational database can be used. Full instructions of how
to install MariaDB database can be found here: https://downloads.mariadb.org/.

Install Front End

e Front End: We have developed a web front end, useful for end-users of our application. It provides a
Graphical User Interface
o Based on HTML, Javascript, Vue Javascript framework and other libraries
o Running: it is deployed on our server (and cloud servers as well) and accessible in http://snf-
755174.vm.okeanos.grnet.gr

30

Install Java

e Most of the systems used are built on top of java engines so a Java distribution needs to be installed
in the system before anything else.
o On Ubuntu machines a simple list of commands is enough to install the latest distribution of
Java:
= sudo add-apt-repository ppa:webupd8team/java
= sudo apt-get update
= sudo apt-get install -y oracle-java8-installer
= sudo apt-get update
o On Windows machines we have to download the appropriate installer from
https://java.com/en/download and execute it

Install Ethereum/Quorum Blockchain
Instructions are provided in the previous Section related to the Blockchain demonstrator.
Operating System

e We have tested the platform on Windows 10 and Ubuntu 18 but all of the software listed here is
available in a large number of other distributions.

Okeanos

e Okeanos: We have deployed our Node-Red and Neo4j services to Okeanos cloud service for Greek
Research and Academic Community
o https://okeanos.grnet.gr/home/

Licensing (if applicable)

Since ICCS/NTUA is a non-profit Academic Research Body, we will be releasing all related M-Sec results as
open-source contributions under Open Source licenses. Concretely, permissive licenses are not restrictive
licenses and they can be used to create a proprietary good, allowing commercial exploitation and ensuring
high impact. Examples of those are Apache, BSD, etc.

The following figure presents the interactions of the Secure City Data Access FG with other FGs and
components of the M-Sec solution. The Annex presents the position of the FG within the whole M-Sec
Architecture.

31

loT Marketplace

Security
Management
Tool

T&R Model
engineficol

Infrastructure
Layers

Functional FG used only during Communication
Group (FG) Design/ Development sub-layer
Core System . Pilot System . External/Future System . ‘External/Pilot System .
‘Component Component Component Component

Figure 18. loT Marketplace FG with other FGs

Interaction with Security and Trusted Storage FG

Integration between the loT Marketplace FG and the Security and Trusted Storage FG was implemented. In
more detail, loT Marketplace was directly integrated to all components of Security and Trusted Storage FG
namely Blockchain Framework, Middleware Services, and Crypto Companion DB.

In the following figure, the flow of the data can be seen, showing the integration of both FGs having as a
communication component the Worldline Connected Care Assistance.

getData Worldiine Connected |~ e9isterSensar
Secured and Trusted Care Assistance from » 0T Marketplace FG

re
Storage FG Application FG

getDataFromSensor

Figure 19. Example of data flow between Secured and Trusted Storage FG and loT Marketplace FG
Interaction with Security city-data Access FG

A point of integration with Security city-data Access FG and Security and Trusted Storage FG was implemented
to facilitate different use cases (mainly use case 3, use case 4, and use case 5) and end-users of the pilots. To
this direction, a new component was developed, namely “SOXFire — Blockchain — loT Marketplace Bridge”

32‘©

allowing registration of sensors, purchase/exchange of data, and visualization of data. An overview of this

component is shown in the following figure.

—

? o=

e T e
“ '\""‘“ de?'nand side e

5 Agent tor anatyring dsts

SOXFire - MarketPlace Bridge

Figure 20. Overview of SOXFire — Blockchain - loT Marketplace Bridge

A more technical figure is provided below, displaying details of this integration.

Sensor
on KEIO Publish data

Mobile Sensing
Platform

Subscribe data Register sensor [WYRVECH B

& Middleware

SOXFire - MarketPlace Bridge

KEIO SOX- ICCS Proxy
store Server

loT Marketplace

(integrating
Companion DB)

Store data

Figure 21. Technical overview of SOXFire — Blockchain — loT Marketplace Bridge

End-to-end security functional group provides accounting for the loT Marketplace functional group. It enables
clients of the marketplace to be authenticated either as the owner of devices, owner of data, or simply a

consumer.
One interest in using the security manager instead of an internal database is to:

33

prevent the inclusion of falsified data in the marketplace by verifying and attesting the authenticity of the
source cryptographically.

enable to trace the usage of the marketplace, in particular, to provide automatic breach notification and
other forms of remediation.

We present in the diagram below a mutual authentication between an loT marketplace app and a secure
device. The secured device uses HTTPS flow to verify the IoT. The loT marketplace app uses TLS Client
Authentication to verify the identity of the client (secure device).

In the diagram in Figure 22, we present a use-case allowing a secure device to send monitoring data to an loT
marketplace app (here replaced by an InfluxDB database for development and testing purposes) every x
seconds. The proxy server (Nginx in the figure) verifies and checks the cert validity of every request using the
M-Sec OCSP mechanism. If the cert is valid, data will be stored on the influxDB. Otherwise, data will be

rejected, and users’ owners are notified.

PKI
FreelPA

-t
|

Gatewav
OCSP* / CRL** synchronization ‘
Start secure Telegraf Send monitoring data to influxDB)
service using host cert {client_cert, data} Check client cert

user

for SSL/TLS client
authentication

Request Rejected N y
Save data to DB

Figure 22. Example of certificate-based authentication and authorization between an loT device and a backend

34

3. Development & Security Designing Tools FG

The Development & Security Designing Tools FG aims to establish engineering foundations to support the
development of secure smart city applications. Although the smart-city platform itself is secured, application-
level vulnerabilities make systems insecure. However, ensuring application-level security requires tremendous
effort for developers. Components in the Development & Security Designing Tools FG provide a set of
methodologies and tools to support the development of secure smart city applications on top of the M-sec
platform. Key benefits achieved by those components include:

Reduce developers’ effort for analyzing security requirements
Mitigate risks to miss typical security threats
Mitigate risks to include application-level vulnerabilities in specification by human errors

Specifically, the Development & Security Designing Tools FG in M-Sec provides the following key components,
which will be explained in this section:

Security Analysis Tool
Modal Transition System Analyzer

SAT is a software security requirements modeling support tool for a misuse case diagram that enables the
creation of a diagram by embedding the element of the security knowledge.

SAT is implemented as a plugin of astah* (a UML modeling tool developed by Change Vision, Inc) Main
features provided by SAT are as follows:

Misuse case diagram editor to draw misuse case diagrams,
Knowledge base browser to represent security knowledge in the knowledge base.
Knowledge search to search an appropriate security knowledge in the knowledge base.

Application developers with M-Sec platform can define new security countermeasures for the threats
identified by creating a misuse case diagrams.

35

Misuse case diagram editor Knowledge base browser

[xlgvovmEmt —reLL+-Q0vi00 D~ TrO"NE » B /v 2

Security
Solution

Principle

Vulnerability

Funtion

Guideline 4
Misuse AsQLinjection
Pattern

Security
Patterns

/ SQL injection
Input Validation Cheat Sheet

Single Access point Inject Unexpected Items

Knowledge search

. Knowedge viewer

Single Access Point:

[Q. Search]

Single AccessPoint
The Single Access design pattern restricts the access to a resource, allowing only [EES

a single retrieval. Consecutive accessestriggeran error, which usually péintsto
) Source: https://..../

view in Knowage browser
) add the note to editor

Figure 23. The Security Analysis Tool
Modal System Transition Analyzer (MTSA)

MTSA is a software development tool to automatically synthesize a software behaviour specification with a
formal guarantee. A technique supported by the MTSA is called discrete controller synthesis. The discrete
controller synthesis is a generation technique of “correct” behaviour specification based on the two-player
game theory. It takes requirements specified as fluent linear temporal logic (FLTL) and environmental
assumptions specified as labeled transition system (LTS) as inputs and synthesizes a discrete event controller
as an LTS. The synthesis algorithms are based on the two-players game. Hence, the synthesized behaviour
specification is ensured to satisfy the requirements under the environmental assumptions.

36

/

environment model (as LTS)

......

behavior specification (as LTS)
with formal guarantees

o @ ® @ . ® *@
_‘\..l. . S ENAH frdeiIR) p

-~

requirement model (as FLTL)
-1
* Robot never crash]

* Robot should visit battery station . . .
when its battery level becomes low This is ensured to satisfy the requirements

. under the environment model

J

Figure 24. MTSA Overview

MTSA is an open-source, integrated development tool for discrete controller synthesis. The main features
provided by MTSA are as follows:

model editor helping developers to specify LTS-based environment model and FLTL-based requirement
model,

synthesis engine generating a behaviour specification model in LTS, and

model animator to validate the environment model or the synthesized behaviour specification model.

TR T

C&EQ samn neNm

R AT5A - tesqonel V1 CSE

P B8 Owt AN ML ewee teb Ot

e~ Ae L RO M F v M6 44

fleot
it

{11

(l
H

Figure 25. MTSA Functionalities

Application developers with M-Sec platform can utilize the MTSA to synthesize “secure application
specification” against to business logic vulnerabilities by formalizing business logic vulnerabilities as FLTL
properties. MTSA can synthesize vulnerability-free behaviour specifications with formal guarantees. If
developers correctly implement the synthesized specification as programs that are executable on the M-Sec
platform (such as Node-RED programs), the developed smart city application is also ensured to satisfy the
security requirements under the environment model.

37

3.3 Interactions with other FGs (or assets)

Although MTSA automatically synthesizes the “correct” behaviour specification model, developers might
incorrectly implement programs. To avoid such bug injections by human errors, we developed a bridge tool
connecting MTSA and Node-RED. The bridge tool automatically generates a Node-RED program correctly
implementing an LTS-based behaviour specification model synthesized by MTSA.

Node-RED program

requirement model === = —=

Tleent MAX_VISITOR = carrive_a[3], leaves 3 . —— =,
1t1_praperty ALLDW TIMING = []{!MAX_VISITOR —= !dery Al - r A
Tl _property DENY_TIMING = [1{ MAX_VISITOR -= lallow A) '

i MTSA -
S Node-RED

environment model translation o=

. tool
INITIAL_STATE = [snterRequest_f —= STATE_1],
STATE 1 = (allow & —= STATE 2 | deny A = INITIAL STATE),] [y
STATE 2 = [arrive All] = STATE_31, = —
STATE_3 = ...

iRt A s A amton 1
1

f—— e
g ~ Benavior model ar
whern thee b e
E B n foom A - —i — =
dem E

A

¥ “correct” Node-RED progr'aﬁ:\mwith formal guarantee

Figure 26. MTSA-Node-RED Integration via Translation Tool

The translation is not straightforward, because a behaviour specification synthesized by MTSA is LTS, which
represents an event-triggered controller (a kind of state machine) whereas Node-RED program is a kind of
dataflow graph. The translation tool implements some translation patterns to correctly maps application logic
specified in an LTS into a dataflow graph.

38

behavior specification model(LTS) Node-RED program (json)

as event-triggered controller as data flow graph
Transitions:
PartController = 0O,
o0 « (reqEnter_Hall <> Q1), L T—
(0% = (resReovStatus -> Q2), P - . ——
@ = {sllow Hell -> Q3 S . e
|deny_Hall -> 018534}, e ateaand —
03 = {arrive_Hall[1] == 04), . - -
0 = (regEnter A —> 05 — B
|reqEnter_Hall —> 010497),
] = {resRoosStatus <= Q6}, el rageme1) Tam—] Tm—
06 = (deny_A = Q7 a . a
|allow A — QB), — = el R p—— ——
o7 = {arrive_Hall[1] -> Q4), - C—— 3 aammaanied 4
(] = {arrive_Al1l == 09), e rimee. reases’ om——]
@ = (reqEnter_B —> 010 -
|reqnter Hall —> Q18463), —) - T—1 —
08 = (resRoowStatus <= Q11), a - N — - o ragrossses *
011 = (deny 8 - Q12 e = - e = av—
Jallow B —> 013),
02 = {arrive_A[1] == 09), = p—— pr—)
013 = (arrive_B[1] == Q14), PO —— X .
014 = (reqEnter_C -> Q15 ‘ am—
|reqEnter Hall —> q10488), : eennel): remmes1 Tm—T)
015 = {resRoomStatus == Q16), —1 e R— — R - - ats roanarsbn
016 = (deny C -> 017 e pr———
|atlow € -> Q18),
07 « {arrive_B[1] == M4), a p——— o1
018 = {arrive C1] -> 019), ROn—— 3
019 = (reqEnter D -> Q20 —t
|reqEnter Hall —> Q10485), S S— o p— o .
028 = (resRoowStatus == Q21), — N—— — E—— - - aavintn ® goom ok
021 = (deny D -> 022) Ta—]
Jallow 0 -> Q23), t R r——
022 = {arrive C[1l == q19), P
023 = {arrive D1} -> Q24), R P —— — —
024 = (reglut —> Q25 3 ! 3
|reqEnter_Hall -= Q31), — R aana R— - RIS
025 = (resRoovStatus - Q26), - —1 g
026 = (deny_Out -> Q27 el IR — Jra—
Jallow_ut —> G28),
027 = {arrive D[1] == Q24), —— C—
28 = (leave —> 29), e’ o1 -
029 = {reqEnter_Hall -> Q39), A) — A I
030 = {resRoorstatus == 02, - C—1
031 = (resRoovStatus -> 032),
032 = (allow Hall -> 033

Figure 27. An Example of LTS-based behavior specification and corresponding Node-RED program
Developers should perform the following procedure to obtain Node-RED program.
Specify requirements as FLTL and environment assumptions as LTS
Synthesize behaviour specification model by using MTSA by inputting them. Then, obtain LTS-based

behavior specification
Translate the LTS-based behavior specification into NodeRED program by using the translation tool.

The generated a Node-RED program can be executed on Node-RED platform orchestrating sensors and
actuators provided by a smart city platform. Thanks to MTSA, the program is ensured to satisfy given security
requirements under the environmental assumptions.

3.4 API

Components in the Development & Security Designing Tools FG are tools and methodologies used by
developers at development time. No APIs are provided.

39

4. Conclusion

This deliverable D4.8 is the final version of the Deliverables related to T4.4. As presented in the original M-Sec
architecture already introduced in previous reports such as Deliverable 3.4, the layer addressed by this task is
the Applications Layer. Two main FGs have been identified and documented in detail namely the loT
Marketplace FG and the Development & Security Designing Tools FG. Their components, the interactions and
integrations with other components as parts of a unified architecture is also documented in detail.

40

Annex

N Encrypted
Data Transfer

loT Marketplace

Transactions|
handling|

T&R Model
engine/tool

Encrypted

Data Transfer

O iz [

werzz: () == () WSS
mn: . P::k’ym mm-urm::“m . mlf’g:lm .
Figure 28. The M-Sec Architecture (T4.4 FGs in yellow)

