

1

D4.6 P2P level security and M-Sec blockchains

March 2021

2

Grant Agreement No. 814917

Multi-layered Security technologies to ensure hyper-connected
smart cities with Blockchain, BigData, Cloud and IoT

Project acronym M-Sec

Deliverable D4.6 P2P level security and M-Sec blockchains

Work Package WP4

Submission date 31 March 2021

Deliverable lead Georgios Palaiokrassas (ICCS)

Authors Georgios Palaiokrassas (ICCS), Xavier Cases Camats (WLI), Orfefs Voutyras

(ICCS)

Internal reviewer Xavier Cases Camats (WLI) / Aamir Bokhari (YNU)

Dissemination Level Public

Type of deliverable DEM

The M-Sec project is jointly funded by the European Union’s Horizon 2020 research and innovation programme

(contract No 814917) and by the Commissioned Research of National Institute of Information and

Communications Technology (NICT), JAPAN (contract No. 19501).

3

Version history

Date Authors (Organization) Changes

v0.1 01 February 2021 Georgios Palaiokrassas (ICCS) Full ToC and assignments

v0.2 22 February 2021 Georgios Palaiokrassas (ICCS) Content for FGs Components

v0.3 01 March 2021 Xavier Cases Camats (WLI) CCD Section

v0.4 17 March 2021 Georgios Palaiokrassas (ICCS)
FGs & Integrations of FGs

updates

v0.5 18 March 2021 Xavier Cases Camats (WLI) new CCD figures

v0.6 18 March 2021 Georgios Palaiokrassas (ICCS) Components API & Figures

v0.7 22 March 2021 Xavier Cases Camats (WLI) Interaction with other FGs

v0.8 23 March 2021 Georgios Palaiokrassas (ICCS) FGs’ APIs and Common API

v0.9 24 March 2021 Georgios Palaiokrassas (ICCS) Rephrasing and updating

V0.10 25 March 2021 Xavier Cases Camats (WLI) Rephrasing and corrections.

v0.11 25 March 2021 Georgios Palaiokrassas (ICCS) Integrating different parts

v0.12 27 March 2021 Georgios Palaiokrassas (ICCS) Formatting, corrections

v0.13 28 March 2021 Orfefs Voutyras (ICCS) Version for internal review

V0.14 31 March 2021 Xavier Cases Camats (WLI) Internal Review

v0.15 31 March 2021 Aamir Bokhari (YNU) Internal Review

v1.0 31 March 2021 Georgios Palaiokrassas (ICCS) Version ready for submission

4

Table of Contents
Version history ... 3

List of Tables .. 5

List of Figures ... 5

Glossary ... 7

Executive Summary ... 8

1. Introduction .. 9

1.1 Scope of the document ... 9

1.2 Relation to other work packages and tasks ... 9

1.3 Methodology followed .. 10

1.4 Relation to M-Sec Risks ... 10

2. Secured and Trusted Storage FG .. 13

2.1 General Description of the FG ... 13

2.2 Components of the FG ... 13

Blockchain Framework .. 14

Middleware Services ... 30

Trust & Reputation Management ... 36

Crypto Companion Database .. 43

2.3 Interactions with other FGs ... 60

Interaction with IoT Marketplace FG .. 61

Interaction with Security city data Access FG ... 62

Interaction with Application FG .. 64

Interaction with End-to-End Security FG .. 64

2.4 Common API .. 65

3. Conclusion ... 67

Annex ... 68

5

List of Tables

Table 1. M-Sec T4.3 related Risks and Threats .. 11

Table 2: Overview of M-Sec Token's functions ... 20

Table 3: Detailed presentation of functions and events of M-Sec Token ... 21

Table 4: Sensors Smart Contract details .. 23

Table 5. KYC process exposed methods .. 26

Table 6. Functions and Events of Values Handler Smart Contract .. 29

Table 7: Demonstrators and their correlation with Use Case Pilots ... 67

List of Figures

Figure 1. T4.3 and D4.6 relation with other WPs and Tasks.. 9

Figure 1. Secured & Trusted Storage FG .. 13

Figure 2. Ganache Explorer allows us to examine all blocks, transactions, addresses and their balances 15

Figure 3. Details about blocks, transactions, addresses and smart contracts .. 17

Figure 4. The Trust Continuum .. 18

Figure 5. Alastria in the Trust Continuum ... 19

Figure 6. Item Manager Smart Contract .. 22

Figure 7. Sensors Smart Contract .. 23

Figure 8. Example of datasets from Santander Open Data Platform .. 27

Figure 9. A view of the documentation of the Open Santander Platform API .. 28

Figure 10. Overview of the KYC process for the M-Sec Platform .. 31

Figure 11. Example call of createNewAccount function, using Postman .. 34

Figure 12: General steps followed in T&R models. ... 37

Figure 13: Calculation of the Trust Index of an actor. ... 40

Figure 14: TRMSim-WSN. .. 41

Figure 15: Normal Network Comparison ... 41

Figure 16. Evaluations from the Santander Open Data Platform as input to T&RM .. 42

6

Figure 17. Access to distributed data. ... 44

Figure 18. Crypto Companion Database Module components. .. 45

Figure 19. Sequence diagram. Enrolment in Crypto Module. ... 46

Figure 20. Sequence diagram. Data encryption in Crypto Module. .. 47

Figure 21. Sequence diagram. Data decryption in Crypto Module. .. 48

Figure 22. Sequence diagram. Disenrollment in Crypto Module. ... 49

Figure 23. Authentication API in Crypto Companion Database Module. .. 50

Figure 24. Sequence diagram. Enrolment in CCDB Module. ... 51

Figure 25. Sequence diagram. Disenrollment in CCDB Module. ... 51

Figure 26. Sequence diagram. Read data in CCDB Module. .. 52

Figure 27. Sequence Diagram. Save data in CCDB Module. .. 53

Figure 28. Sequence Diagram. Delete data in CCDB Module. ... 54

Figure 29. Sequence diagram. Authorize in CCDB Module. .. 54

Figure 30. Sequence diagram. Remove authorization in CCDB Module. .. 55

Figure 31. Sequence diagram. Request authorization in CCDB Module. .. 55

Figure 32. Interaction of the Secured & Trusted Storage FG with other FGs ... 61

Figure 33. Example of data flow between Secured & Trusted Storage FG and IoT Marketplace FG 61

Figure 34.Example of data flow between Secured & Trusted Storage FG and Security city data Access FG.... 62

Figure 35. Overview of SOXFire – Blockchain - IoT Marketplace Bridge ... 63

Figure 36. Technical overview of SOXFire – Blockchain – IoT Marketplace Bridge ... 63

Figure 37. Example of data flow between Application FG and Secured & Trusted Storage FG 64

Figure 38. Security & Storage Functional Group API .. 66

Figure 39. The M-Sec Architecture (T4.3 FG in yellow) ... 68

7

Glossary

Acronym Description

API Application Programming Interface

IPFS InterPlanetary File System

CCDB Crypto Companion Database

KYC Know Your Customer

Dx.y Deliverable y of WP x

FG Functional Group

Tx.y Task y of WP x

P2P Peer-to-peer

UC Use Case

WP Work Package

REST Representational state transfer

T&R Trust and Reputation

IoT Internet of Things

8

Executive Summary

The work described in this deliverable (D4.6) was carried out in the framework of WP4 – “Multi-layered

Security Technologies”, and more specifically, in the framework of T4.3 – “P2P Level Security and Blockchains”.

This report presents the updated and final version of the document (the first version being D4.5), providing

the technical details of the Functional Group and Functional Components related to the Task.

All technical partners involved in this task collaborated and developed the appropriate tools to meet the

objectives set out in the project, especially with regard to novel security aspects in IoT contexts. Every partner

focuses on the individual modules that they are responsible for during the implementation phase of WP4 and

supports the integration activities of WP2, while following the common Architecture framework set by WP3

in D3.4.

All of the updated versions of the WP4 technical deliverables (D4.2, D4.4, D4.6, D4.8, D4.10) follow the same

approach and have the same structure. Section 1 provides an introduction to the scope of this document and

its relation with other WPs and Tasks. Section2, which aggregates all the main outcomes of the Task, presents

extensively the FG and the Functional Components covered by the Task, by providing an extensive description

of the corresponding functionalities, and details related to the API of the FG and its interactions with other

FGs of the M-Sec solution. Finally, Section 3 concludes the document.

Regarding the differences between ‘D4.5 M-Sec P2P Level Security and Blockchains – first version’ and ‘D4.6

M-Sec P2P Level Security and Blockchains – final version’:

• Section 1 has remained more or less the same, but includes an extra subsection identifying the M-Sec Risks

linked to this specific Task.

• Section 2 as a whole provides a more integrated view of the Components, as it focuses on their

presentation from an FG perspective. As such, the CCDB component is also described in this deliverable

(moved from T4.5).

• Section 2.2 corresponds to Sections 2 and 3 of the previous version of the document (D4.5). The Package

Information, Installation Instructions, and the Licensing Information are omitted in the new version, but

they are replaced by Section 2.4.

• Section 4 corresponds to Section 4 of the previous version of the document.

All in all, the deliverable is considered to have provided all the information required to expose the M-Sec

technical solutions related to T4.3 as well as the results of the integration and demonstration related activities.

9

1. Introduction

1.1 Scope of the document

The current document, deliverable ‘D4.6 P2P level security and M-Sec blockchains’, provides the second and

final version of M-Sec developments related to blockchain technology and P2P level security and also the

second version of the Crypto Companion Database. In detail, it presents four different demonstrators as well

as the corresponding services and gives installation details. It also provides details about developments since

the previous iteration of this deliverable, namely D4.5 on M18, and also part of D4.7. The main focus of the

presented demonstrators and tools is to implement the M-Sec blockchain framework together with the CCDB

to facilitate the convergence of IoT security with blockchains in order to support an innovative smart city

platform.

1.2 Relation to other work packages and tasks

The following figure summarises the relations of this deliverable (and the corresponding task) to other tasks

and WPs.

Figure 1. T4.3 and D4.6 relation with other WPs and Tasks

The Task is directly related to WP3. T4.3 receives as input system and user requirements from T3.1 and Risks-

and Threats-related information from T3.2. Moreover, it follows the common Architectural framework that

has been identified in T3.2 for the coordination of all the technical activities. Similarly, the Task receives input

from WP2 related to the coverage of the needs of the UCs and the pilots.

Furthermore, T4.3 has dependencies with the rest of WP4 “Multi-layered Security technologies” Tasks and

more specifically with T4.1 for IoT security and related services based on blockchain technology, T4.2 “Cloud

and data level security”, T4.4 “Application level security” and T4.5 “Overall end-to-end security” focusing on

the integration with respective implementations for encrypted data storage.

10

Finally, the results of this report are directly provided as input to T2.3 which is focusing on the overall

integration activities. Together with the other final deliverables of WP4, D4.2 and D4.6 provide all the

information and functionalities required for an integrated security solution.

1.3 Methodology followed

In order to enable the M-Sec paradigm, we researched different technologies and approaches of blockchain

technology. We initially started the analysis with a detailed description of different blockchain frameworks,

such as Ethereum, Hyperledger and Quorum, and tools we experimented with. After analysing thoroughly

all the different available technologies, we selected Ethereum-based blockchain framework for our

implementation.. More details are presented in Section 2. The same section provide details about other assets

of this FG, including Middleware Services, Trust and Reputation Management and Companion Database. In

the last section, the interactions among the components and other Functional Groups are given, along with

the installation and demonstration instructions.

Data security and protection is one of the main goals of any application, and one of the main goals of the M-

Sec project. In order to be compliant with the GDPR, a parallel system to Blockchain has been developed: a

“Companion Database”, that allows saving data linked to Blockchain with a hash of the same. This solution has

been adopted, but with some additions. The data stored in the database will be encrypted per user, meaning

that users will not share keys between them. The problem of a database usually is that it is centralized, so with

this development the data can be distributed.

Therefore, the main motivations of this development were:

• A user can save data.

• A user can delete data.

• A user can read data.

• A user can modify data.

• A user can delete all data owned.

• A user can read all data owned.

• The data will be encrypted when saved.

• The data will be decrypted when read. (Conditional with the next statement)

• The data will only be accessible by the owner or an authorized user.

• The data will be distributed.

1.4 Relation to M-Sec Risks

The list of the main potential risks and threats that may affect M-Sec’s Secured and Trusted Storage FG is

provided in the following table, as extracted from Task 3.3, D3.5.

11

Table 1. M-Sec T4.3 related Risks and Threats

Threat # Description

STRIDE

Threat

Class

M-Sec Asset Source
Probabi-

lity

Critica-

lity

Ra-

ting
Comments/ Mitigation

Thr.Com.9 Disclosure of encryption parameters

for the communication channels

I IoT Gateway,

Caburn

Use

Case 2,

3

3 5 15 Security Manager

Thr.Com.21 51% attack over blockchain R, T Quorum

Blockchain

All 1 5 5 Avoid PoW blockchain and use instead

permissioned - delegated consensus

mechanisms

Thr.Com.22 Private key security - Public key

encryption scheme

R, E Quorum

Blockchain

All 1 3 3 Permissioned blockchains can mitigate the

specific threat more easily

Thr.CD.1 Impersonation: A third party uses a

false ID to gain access to the cloud

S SoxFire,

Companion DB

Use

Case 2,

3

3 3 9 Strong Authentication

Thr.CD.2 An attacker may install a malware to

access the data and whole cloud

system

I, T, D SoxFire,

Companion DB

Use

Case 2,

3

1 3 3 Protected in Keio's network

Thr.CD.3 Accidental or intentional physical

damage to any cloud part may cause

cloud service failure

D SoxFire Use

Case 3

3 1 3 Backup server

Thr.CD.4 Disruption of a global service (e.g.

attack on power management)

D SoxFire Use

Case 3

3 1 3 Backup power

Thr.CD.5 Data (raw & processed, personal

data) stored in the cloud can be read

by an intruder

I SoxFire,

Companion DB

Use

Case 2,

3

3 5 15 Encryption

Thr.CD.6 An unauthorized party gets access to

device configuration information

I SoxFire Use

Case 3

1 3 3 Protected in Keio's network

Thr.CD.7 Attacker denies legitimate users

access to infrastructure services

D N/A - - - - No Infra services running

12

Thr.CD.8 Attacker can poison cloud database

and/or alters outgoing information

T SoxFire,

Companion DB

Use

Case 2,

3

3 5 15 Encryption

Thr.App.16 Vulnerabilities-flaws in smart

contracts

T,R,I,D Blockchain app /

Smart contract

All Use

Cases

3 5 15 Flaws in smart contracts can cause

unforeseen security breaches. Thorough lab

testing before going into production.

Continuous code review.

Thr.App.17 Under-optimized smart contracts T,R,I,D Blockchain app /

Smart contract

All Use

Cases

3 3 9 Dead code, loop fusion, repeated

computation can cause denial of service on

the long run. Thorough lab testing before

going into production. Continuous code

review.

Thr.App.18 Transaction privacy leakage T,R,I,D Blockchain app /

Smart contract

All Use

Cases

3 3 9 Once identity is revealed the whole history

of transactions is exposed. Thorough lab

testing before going into production.

Continuous code review.

Thr.Com.9 Disclosure of encryption parameters

for the communication channels

I IoT Gateway,

Caburn

Use

Case 2,

3

3 5 15 Security Manager

Thr.Com.21 51% attack over blockchain R, T Quorum

Blockchain

All 1 5 5 Avoid PoW blockchain and use instead

permissioned - delegated consensus

mechanisms

Thr.Com.22 Private key security - Public key

encryption scheme

R, E Quorum

Blockchain

All 1 3 3 Permissioned blockchains can mitigate the

specific threat more easily

13

2. Secured and Trusted Storage FG

2.1 General Description of the FG

The following figure presents the core components of the Secured & Trusted Storage FG. As the name implies,

this FG is focused on providing tools and mechanisms that enhance the security of the M-Sec overall solution

at the Storage level. To achieve that, M-Sec exploits both a blockchain-focused approach and an encrypted

database one. By storing and encrypting the main core of the data off-chain on the Cloud and storing the

corresponding metadata and interactions-related data on-chain, M-Sec couples the benefits of both the P2P

and Cloud solution.

Figure 2. Secured & Trusted Storage FG

The core components that relate to this FG are:

• Blockchain & Blockchain Middleware Services

• T&R Management

• Crypto Companion Database

In the following section, these components are described in detail. Section 2.3 presents the interactions of

these components with components of other M-Sec FGs. Finally, the Annex presents the position of the

Secured & Trusted Storage FG within the whole M-Sec Architecture.

2.2 Components of the FG

The Secured and Trusted Storage FG consists of three main components the Crypto Companion Database, the

Quorum Blockchain/Blockchain middleware and the Trust & Reputation Management. One of the most

important features of this FG is the decoupling and handling of data based on their types from components of

the FGs, namely the CCDB and the Quorum Blockchain/Blockchain middleware. The main distinction is

whether personal data, metadata or data for interactions and transactions are handled. In the following

14

subsections the different components are described in detail as well as the interactions among them and the

interactions with other FGs.

First description of the components was provided in the previous deliverable D4.5. In the current deliverable,

more details, additions and further improvements are also provided, as well as details about the interactions

among the components and among this FGs and the other FGs defined.

Blockchain Framework

General Description of the Component

The main focus of this Component is to implement the M-Sec blockchain framework, and to facilitate the

convergence of IoT security with blockchains in order to support an innovative smart city platform. We used

Ethereum-based blockchains as the basic foundation of M-Sec blockchain as it enables not only the exchange

of value (M-Sec tokens) but also the enforcement of smart contracts, which provides an additional feature for

the implementation and validation of the selected M-Sec use cases.

A milestone for the course of blockchain technology was the development of Ethereum project1, offering new

solutions by enabling smart contracts’ implementation and execution. It is a suite of tools and protocols for

the creation and operation of Decentralized Applications (DApps), “applications that run exactly as

programmed without any possibility of downtime, censorship, fraud or third-party interference”.

It also supports a contract-oriented, high-level, Turing-complete programming language2, allowing anyone to

write smart contracts and create DApps. Smart contracts are mainly written in the programming language

Solidity3,4.

We have initially experimented with different Blockchain platforms, before concluding to Ethereum-based

blockchains, such as Quorum and examined both public (permissionless) and private (permissioned)

alternatives of the M-Sec blockchains. The most prominent among them were “Hyperledger” and “Quorum”,

which are described in the next Sections. Hyperledger implementation was considered as it can enable,

through specific channels, the implementation of flexible blockchains with different permissions and

authorization schemes.

The peer group management service is also part of the work covered in this task, as research will be pursued

for defining how the blockchain networks are going to be self-organized and structured in the context of

service provisioning so that they can form and operate the multi-layered architectures.

1 J. Ray, "Ethereum Introduction," 11 12 2019. [Online]. Available: https://github.com/ethereum/wiki/wiki/Ethereum-
introduction
2"White Paper," [Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper
3 Ethereum, "What is Ethereum?," [Online]. Available: http://www.ethdocs.org/en/latest/introduction/what-
isethereum.html

4 Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io

https://github.com/ethereum/wiki/wiki/Ethereum-introduction
https://github.com/ethereum/wiki/wiki/Ethereum-introduction
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.ethdocs.org/en/latest/introduction/what-isethereum.html
http://www.ethdocs.org/en/latest/introduction/what-isethereum.html
http://solidity.readthedocs.io/

15

Blockchain framework modules

In this Section we present the details regarding the blockchain platform, in which we develop the smart

contracts that support the different use cases. As mentioned before, the different smart contracts are written

in the programming language Solidity5 .

Private Ethereum Blockchain

During the development process we have used a local private blockchain named Ganache6, which allowed us

extensive testing of the developed smart contracts. It provides a personal Ethereum blockchain which we can

use to run tests, execute commands, and inspect the state while controlling how the chain operates. It

provides a built-in explorer as shown in the following Figure 3 and allows us to quickly see the current status

of all accounts, including their addresses, private keys, transactions and balances.

Figure 3. Ganache Explorer allows us to examine all blocks, transactions, addresses and their balances

Public Ethereum Blockchain

Additionally, we deployed smart contracts on Public Ethereum Blockchain using browser IDE “Remix”7. Remix

is an open-source tool that supports smart contracts development on the browser and facilitates the

deployment on local or public Ethereum-based blockchain platforms. We used Ropsten public Ethereum

blockchain8. It is important to extensively test the smart contracts before we deploy them to the Quorum

blockchain network (see next section), since the code can’t be changed after deployment. To this direction,

extensive testing was carried out on blockchains, by using these two testing solutions: Ganache Cli, as well as

the Ropsten Test Net.

5 Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io

6 https:// www.trufflesuite.com/ganache
7 https://remix.ethereum.org/
8 https://ropsten.etherscan.io/

http://solidity.readthedocs.io/
http://www.trufflesuite.com/ganache
https://remix.ethereum.org/
https://ropsten.etherscan.io/

16

Quorum blockchain framework

Finally, the different smart contracts are written in the programming language Solidity9 and are deployed on

Quorum blockchain framework 10 . Quorum is a permissioned implementation of Ethereum which allows

certified members to build and run decentralized applications that run on blockchain technology. It is an open-

source platform and supports smart contract privacy. Both private and public smart contracts are validated by

every node within the blockchain network. Additionally, Quorum provides privacy and transparency, both at

transaction-level and network wide.

In each Quorum node consensus is achieved with the Raft or Istanbul BFT consensus algorithms instead of

using Proof-of-Work. The P2P layer has been modified to only allow connections to/from permissioned nodes.

In Ethereum the notion of Gas was introduced (the fee or pricing value required to successfully conduct a

transaction or execute a contract on Ethereum blockchain platform), while in Quorum the pricing of Gas has

been removed, although Gas itself remains.

One of the features of Quorum that are of great value for the component is the network and peer to peer

permission management. This feature enables only the validated and authorized users to have access and be

a part of the network. Also, Quorum provides enhanced transaction and smart contract privacy features.

Permission-based nature of Quorum enables the constitution of private and public transaction getting the best

of both worlds, open transactions are analogous to Ethereum but when it comes to the private transaction

then it is confidential, and the data is not exposed to the public. Quorum adds privacy functions that allow for

private transactions that are only visible to the transacting parties, while the other parties in the network

would only see a hash. Finally, Quorum is considered to be very fast and being able to process even thousands

of transactions per second, due to its efficient consensus mechanism which belongs to the family of Byzantine

Fault Tolerance (BFT) mechanisms11.

In order to develop and deploy the smart contracts to Quorum blockchain, we have used Truffle suite12. It is a

development environment and testing framework using the Ethereum Virtual Machine (EVM). Additionally,

we use Quorum Maker13 (see Figure 4 below), which facilitates the deployment of smart contracts, offering

visualization features to monitor the Quorum blockchain network and related blocks and transactions. Before

we deploy the smart contracts to the blockchain network, we extensively tested them on Ethereum

blockchains using two testing solutions: Ganache Cli, as well as the Ropsten Test Net. Additionally, before

being deployed on a larger Quorum Network, we used a Quorum test network consisting of seven nodes14.

9 Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io

10 https://docs.goquorum.com/en/latest/

11 Vukolić M. (2016) The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. In: Camenisch J.,

Kesdoğan D. (eds) Open Problems in Network Security. iNetSec 2015. Lecture Notes in Computer Science, vol 9591.

Springer, Cham

12 https://www.trufflesuite.com/
13 https://github.com/synechron-finlabs/quorum-maker
14 https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

http://solidity.readthedocs.io/
https://docs.goquorum.com/en/latest/
https://www.trufflesuite.com/
https://github.com/synechron-finlabs/quorum-maker
https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

17

Smart contracts are written in Solidity so it is feasible to migrate from Quorum permissioned Blockchain

Framework to public Blockchain Frameworks (e.g. Public Ethereum Network), since Solidity is the common

programming language to Ethereum-based blockchain frameworks.

Figure 4. Details about blocks, transactions, addresses and smart contracts

ALASTRIA

Alastria is neither a public-permissionless network nor a private consortium, it is a Public-Permissioned

network. It shares some of the properties of both types of networks, and it also has some requirements of its

own.

Figure 5 describes the prevailing public-permissionless blockchain networks currently in production like Bitcoin
or Ethereum have the very desirable property of being “Trustless”. However, mainly due to the characteristics
of the consensus algorithms used to achieve that property, they suffer from very well documented scalability
problems. There are a lot of efforts being made to solve or alleviate the scalability problem, but as of today,
the problem still exists and permissioned networks will always have several orders of magnitude better
performance.

18

Figure 5. The Trust Continuum

The Problems of the Public-Permissionless blockchain networks are:

• Scalability: The networks choose Decentralization and Security over Scalability.

Taking into account the words of Vitalik Buterin describing the “Blockchain trilemma15”, the trilemma

claims that blockchain systems can only at most have two of the following three properties:

o Decentralization, defined as the system being able to run in a scenario where each participant

only has access to O(c) resources, where c refers to the size of computational resources

available to each node (i.e. a regular laptop or small VPS “Virtual Private Server”).

o Scalability, defined as being able to process O(n) > O(c) transactions, where n refers to the size

of the ecosystem in some abstract sense.

o Security (or Safety), defined as being secure against attackers with up to O(n) resources

• Transaction Costs: High and Volatile

• Privacy: By default, in public blockchains like Bitcoin or Ethereum, transactions are executed by all nodes

in the network, transactions are globally published and state data is not encrypted in most applications,

so all participants have access to all data stored in the ledger without any restriction.

15 https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df

https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df

19

Figure 6. Alastria in the Trust Continuum

In Public-Permissioned networks, the objective is to maximize decentralization and safety, even if this goes to
the detriment of scalability. In this context, decentralization typically means the ability to transact
anonymously but safely among individuals without the need for any intermediary acting as trusted party. It is
often the case that the requirement to eliminate third parties is stronger than the requirement that the system
be high-performance so it could be used as a general purpose transaction mechanism.

In Private Consortiums the objectives are generally different, and instead of trying to eliminate third parties
at all costs, they try to use blockchain technology to improve efficiency and reduce costs of transaction among
the partners composing the consortium. In many private consortiums, they want a shared database and
transaction system so they can eliminate frictions and reduce costs of reconciliation.

As Figure 5 and Figure 6 describe, Alastria tries to be as public as possible, but without the disadvantages
associated with public-permissionless networks.

As mentioned before, Alastria is not a Private Consortium but a Public-Permissioned network compatible with
regulation instead. At a very high-level, the characteristics of Alastria are the following:

• It’s permissioned, so every participant node has to be identified before it can participate in the network.

• No cryptocurrency embedded.

• A more efficient consensus algorithm, enabling higher performance and scalability.

• Transaction finality in one block, enabling legal validity of executed transactions.

• Implements legal identities of all participants.

For further information check the GitHub page of Alastria16.

16 https://github.com/alastria/alastria-platform/blob/master/en/Alastria-Core-Technical-Platform.md#alastria-core-
technical-platform

https://github.com/alastria/alastria-platform/blob/master/en/Alastria-Core-Technical-Platform.md#alastria-core-technical-platform
https://github.com/alastria/alastria-platform/blob/master/en/Alastria-Core-Technical-Platform.md#alastria-core-technical-platform

20

Smart Contracts

Smart Contracts are an instance of a computer program that runs on blockchain. In the case of permissioned

blockchain such as Quorum, where only authorized users are able to interact with the ledger, an authorized

user can create a contract by posting a transaction to the blockchain. It is important to notice that its code is

fixed and cannot be changed after deployment. The code’s execution is provoked by a received message either

from a user of another contract and could provide utility to other contracts or require assistance from other

Smart Contracts.

In this section we describe the different smart contracts developed to support the M-Sec use cases as well as

some of the functionalities they provide.

1. M-Sec Token

A custom token was created specifically for research purposes. It is actually a cryptocurrency in the form of a

smart contract running on Quorum Blockchain. It follows the ERC223 17 token standard. Preliminary

implementations followed the ERC20 token standard but ERC223 is a superset of the previous standard

offering security improvements and more usability and backwards compatibility with any services and

functionalities designed and developed for ERC20. As fully compliant with ERC223, it implements a set of

functions and events, such as name(), transfer(), totalSupply() and Transfer event which is emitted to the

blockchain when an amount of Tokens is transferred from a user to another. Some indicative developed

methods are presented in the following Table 2.

This Token has different applications in the use cases. It is firstly used as a payment currency to exchange value

among the users of the Marketplace. Another implementation and configuration of the M-Sec Token allows

us to use it as a “Social Token”. Users of the platform have an initial balance and particular users are rewarded

with more token based on specific criteria such as for example:

i) the most active user,

ii) the most social user,

iii) the user who uploaded the most popular content.

This Token acts as a mean to tokenize a loyalty points program with rewards.

Table 2: Overview of M-Sec Token's functions

contract ERC223 {
 uint totalSupply;
 function balanceOf();
 function name();
 function symbol();
 function decimals();
 function totalSupply();
 function transfer(to, value);
 function transfer(to, value, data);
 function transfer(to, value, data, custom_fallback);
 event Transfer(from, to, value, data);
}

In the following table more details are provided about the developed functions and events of the M-Sec Token:

17 https://github.com/ethereum/EIPs/issues/223

https://github.com/ethereum/EIPs/issues/223

21

Table 3: Detailed presentation of functions and events of M-Sec Token

Name Input Response Description

totalSupply (function) -
uint256

totalSupply
Get the total token supply

Name (function) - string _name Get the name of token

Symbol (function) -
bytes32

_symbol
Get the symbol of token

Decimals (function) - - Get decimals of token

balanceOf (function) address _owner
uint256

balance

Get the account balance of an

account with address: address

_owner

transfer (function)
address _to,

uint _value
boolean

Transfer tokens, compatibility

with ERC20

transfer (function)

address _to,

uint _value,

bytes _data

boolean

function that is always called

when someone wants to transfer

tokens. This function must

transfer tokens and invoke the

function tokenFallback if _to is a

contract.

Transfer (event)

address indexed

_from, address

indexed _to,

uint256 _value,

bytes _data

-

Triggered when tokens are

transferred and is emitted to the

blockchain network

tokenFallback

(function)

address _from,

uint _value,

bytes _data

-

A function for handling token

transfers, which is called from

the token contract, when a token

holder sends tokens

TransferForSensor

Data(event)

address indexed

_from, address

indexed _to,

uint256 _value,

uint32

_sensorID,

string _name,

uint32

_fromTime,

uint32 _toTime

Triggered when tokens are

transferred related to sensor

data and is emitted to the

blockchain network

22

TransferForMedia

Data(event)

address indexed

_from, address

indexed _to,

uint256 _value

Triggered when tokens are

transferred related to media

items and is emitted to the

blockchain network

approve(function)

address

_spender ,

uint256 _value)

bool success

O user (address A) allows to

another entity (address B) to

spent M-Sec tokens on his/hers

behalf

2. Item Manager Smart Contract

The Item Manager Smart Contract allows the interaction of item/content creators (e.g. photos, multimedia

items, sensor data etc.) with the platform and the blockchain. A user is able to upload all the information and

metadata related to an item. To this direction, we have created dedicated “structs” (Figure 7), which are a

special feature of Solidity contract-oriented programming language, in order to store for each item, the details

(e.g. tags, information, metadata) and the unique address of its owner.

struct item {
 address owner;
 string URI;
 uint256 price;
 string tag;
 string info;
}

Figure 7. Item Manager Smart Contract

3. Sensors Smart Contract

This smart contract records all the registered IoT sensors. It gives the possibility to register a sensor and to

change its information afterwards as well. Dedicated Solidity structures were created to store this information

and functions to allow its retrieval.

A structure that allows the storing of the information is the following:

struct sensor {

address sensor-Owner ;

uint8 type-of-Sensor ;

uint MSec-Token-Price ;

23

uint32 timestamp-of-start ;

uint16 frequency ;

int32 latitude ;

int32 longitude ;

string url ;

string name

}

Figure 8. Sensors Smart Contract

In the following Table 4, more details are provided regarding our Sensors Smart Contract:

Table 4: Sensors Smart Contract details

Name Input Response Description

registerSensor

(function)

address sensor-Owner

uint8 type-of-Sensor

uint MSec-Token-Price

uint32 timestamp-of-start

uint16 frequency

int32 latitude

int32 longitude

string url

Boolean

success

Registration of a sensor to the

dedication structure of the smart

contract with the related

information. Upon registration a

verification of registration is

returned

changeSensorInfo(function) uint8 type-of-Sensor

uint MSec-Token-Price

uint32 timestamp-of-start

uint16 frequency

int32 latitude

int32 longitude

string url

Boolean

success

The owner of the sensor changes

some of the fields for example the

price in M-Sec Tokens or its position

BuySensorData (event) Uint32 sensorID

uint32 fromTime

uint32 toTime

 Triggered when the data of a sensor

is purchased and is emitted to the

blockchain network

SensorCreated (event) address indexed seller,

uint32 indexed

sensorID,uint8 sensorType,

uint price, uint32 startTime,

uint16 frequency, int32

latitude, int32

 Triggered when a sensor is created

and registered and is emitted to the

blockchain network

24

longtitude,string url, string

name

SensorChangedSeller

(event)

uint32 sensorID, address

seller

 Triggered when the owner of a

sensor is changed and is emitted to

the blockchain network

SensorChangedPrice (event) uint32 sensorID, uint price Triggered when the price of a sensor

is changed and is emitted to the

blockchain network

SensorChangedUrl (event) uint32 sensorID, string url Triggered when the url of a sensor is

changed and is emitted to the

blockchain network

CompletedTransaction

(event)

uint32 transID, address

indexed buyer, uint32

indexed sensorID, uint32

fromTime, uint32 toTime,

uint amount

 Triggered when a transaction about

a sensor is completed and is emitted

to the blockchain network

changeSensorSeller

(function)

uint32 sensorID1, address

seller1

Boolean

success

The owner of the sensor the

ownership of a sensor

changeSensorPrice

(function)

uint32 sensorID1, uint price1 Boolean

success

The owner of the sensor changes the

price in M-Sec Tokens or its position

changeSensorUrl (function) uint32 sensorID1, string url1 Boolean

success

The owner of the sensor changes the

url of the sensor’s data

getId (function) The unique id of the sensor is

returned

buyData (function) address indexed buyer ,

uint32 sensorID, uint32

fromTime, uint32 toTime

Boolean

success

A user purchases data of a sensor for

a specific time period

It is important to note that functions like changeSensorInfo, changeSensorSeller, changeSensorPrice,

changeSensorUrl succeed only when the owner of the sensor (specific address) attempts to change the fields,

otherwise the access is denied.

The function BuySensorData directly communicates with M-Sec Token smart contract, when a user wishes to

buy data for a specific period. If the user has sufficient funds and the information is correct then the

transaction will be successfully completed. Upon success the event Transfer is emitted to the network

informing the users who watch the smart contracts that this transaction took place.

25

4. Know Your Customer Smart Contract

A huge number of financial banking transactions takes place every day. It is indicative that in July 2019 the

Society for Worldwide Interbank Financial Telecommunication (SWIFT) recorded an average of approximately

32 million transactions per day. Blockchain can enable parties with no particular trust in each other to

exchange digital data on a peer-to-peer basis with fewer or no third parties or intermediaries. In the recent

report Scientific and Technical Research Report of European Commission on Blockchain18, the need for Know

Your Customer mechanisms is highlighted: “the obligation of cryptocurrency exchanges and custodian wallet

providers within the scope of EU regulation to implement mechanisms to counter money laundering and

terrorist fundraising, such as ‘know your customer’ (KYC) “.

It is evident that previously mentioned works involve value exchange through blockchain transactions and

dedicated created smart contracts, making Know Your Customer process necessary. In this direction, we are

presenting an approach which blends smart contracts for exchanging value in the IoT domain on a

decentralized manner, integrating a KYC process handling on chain and off chain data.

Recent works have tried to tackle the problem of data management and KYC for blockchain applications.

Shabair et al.19 introduced a blockchain-based KYC proof of concept system and an orchestration tool for

managing private blockchain environments over large scale test beds. In their work they highlight the need for

additional research on security and privacy issues of blockchain applications. Norvill et al.20 presented a demo

of a system that allows automation and permissioned document sharing in order to simplify and reduce the

work required by the KYC process, while Zhang and Yin 21 conducted a research on a digital copyright

management system based on blockchain technology. They focused mostly on PBFT (Practical Byzantine Fault

Tolerance) consensus mechanism improved by Tendermint 22 replacing original Ethereum POW (Proof of

Work), digital signatures and smart contracts to design user account management strategies, copyright review

and applications for the needs of digital rights management. In our work we further explore the design and

implementation of smart contracts for the KYC process on a decentralized approach.

Blockchain is beginning to transform industries and there is an increasing interest in exploring its potential for

various production use cases, especially for supporting multi-party processes where members don’t

necessarily trust each other. However, there are many challenges that remain to be addressed such as trade-

offs between respecting privacy and supporting transparency. Bhsaskaran et al23 described the design of smart

contracts for consent-driven and double-blind data sharing on the Hyperledger Fabric blockchain platform24

18A. Anderberg et al., “Blockchain Now And Tomorrow,” 2019
19 W. Shbair, M. Steichen, and J. François, “Blockchain orchestration and experimentation framework: A case study of
KYC,” in The First IEEE/IFIP International Workshop on Managing and Managed by Blockchain (Man2Block) colocated with
IEEE/IFIP NOMS 2018, 2018
20 R. Norvill, M. Steichen, W. M. Shbair, and R. State, “Blockchain for the Simplification and Automation of KYC Result
Sharing,” in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 9–10
21 X. Zhang and Y. Yin, “Research on Digital Copyright Management System Based on Blockchain Technology,” presented
at the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),
Chengdu, China, 2019
22 Jae Kwon, “Tendermint: Consensus without Mining.” 2014
23 K. Bhaskaran et al., “Double-blind consent-driven data sharing on blockchain,” in 2018 IEEE International Conference
on Cloud Engineering (IC2E), 2018, pp. 385–391
24 “Hyperledger Fabric,” Hyperledger

26

into a KYC application, where the data are submitted, validated and kept within the ledger supporting different

consent rules and privacy levels.

Vishwa et al.25 presented a decentralized data management system for data privacy and control focusing on

multimedia files. In their solution they use an external data lake, namely a centralized data storage solution

on a cloud to store the transaction details of all the data added on the blockchain. In order to access the

blockchain, a user signs up by broadcasting his identity and will be accepted by the consent of the majority of

the nodes and will be provided his new identity and access permissions. In our approach we additionally use

IPFS leading to a decentralized application and have successfully implemented smart contracts and software

components, leveraging blockchain to automate tasks related to KYC process.

Our process of developing the smart contract to support KYC process is described through its use in the

middleware services section.

Table 5. KYC process exposed methods

Name Input Response Description

CreateNewUser

(function)
Address, info

Boolean

success

Creation of a new user, approve

request

updateUser (function) Address, info
Boolean

success

Update the information of an

existing user

suspendUser (function) Address, info
Boolean

success

Suspend the activity of a specific

user

approveUser(function) Address, info
Boolean

success
Approve requested user

ExtendKYCduration

(function)
Address, info

Boolean

success

Update the information of a user

and extend the duration of

his/hers approval

5. Smart City Data Smart Contract

This smart contract focuses on managing data from the smart cities of Santander and Fujisawa and support

the use cases. It directly communicates with other tools of M-Sec project such as encrypted data storage and

offchain storage. Additional flows are created as part of middleware services to support the interaction and

integration with the rest of the platform.

This smart contract constitutes an extension of the Sensor Smart Contract oriented to better handle datasets

provided by smart cities. Among others, this smart contract was used to integrate the data and datasets from

Santander Open Data Platform 26 . Different datasets are provided about transport, urban planning &

25 A. Vishwa and F. K. Hussain, “A Blockchain based approach for multimedia privacy protection and provenance,” in 2018
IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 1941–1945
26 www.datos.santander.es

http://www.datos.santander.es/

27

infrastructure, culture & leisure, environment, science & technology, society, well-being and more. A view of

the datasets is also shown in the following figure.

Figure 9. Example of datasets from Santander Open Data Platform

As part of the integration, where the open data API is also utilized27, this smart contract stores all the available

metadata, making available the datasets to the marketplace. A view of the documentation of the Open

Santander Platform API is shown in the following figure.

27 http://datos.santander.es/documentacion-api/

http://datos.santander.es/documentacion-api/

28

Figure 10. A view of the documentation of the Open Santander Platform API

6. Value Handler Smart Contract

This smart contract is responsible for handling values in different formats such as hashed and is used to

enhance the security aspects among the different assets and facilitate convergence of IoT security with

blockchains to support an innovative smart city platform.

Some of the functions and events of this smart contract are presented in the following Table 6.

Name Input Response Description

retrieveAll (function) - stored values
All stored values, depending on

permissions

retrieveValue

(function)

Address, value,

info
stored value

stored value, depending on

permissions

retrieveValuesForUser

(function)

Address, value,

info
stored values

stored values for a user,

depending on permissions

29

uploadValue (function)
Address, value,

info

Boolean

Success

Stores a value, or bunch of

values

Uploading (event) Address, value

Retrieving (event) Address, value

Table 6. Functions and Events of Values Handler Smart Contract

API: Blockchain framework exposed methods

In order to allow the communication and integration with other components, services, assets, several methods

were developed. These methods are exposed via a RESTful API, while respective clients have been developed

to facilitate the integration process and documentation with examples and indicative architecture figures and

snippets. In the table that follows, some of the methods are presented, while we could note that part of them

have a final form, while others are still updated to facilitate the integration with other assets, better support

the use cases based on the feedback or improve security aspects of the provided services.

Method “getMSecTokenBalance”

Name Input Response Description

getMSecTokenBalance () String publicKey
{"publicKey": "0x…",

 "balance": 10.5}

This is a GET method, which

returns the balance of a

specific account

Method “addFreeMSecTokens”

Name Input Response Description

addFreeMSecTokens

()
String publicKey

{"publicKey": "0x….",

 "message": "added token

with success”",

 "balance": 10.5}

This is a GET method, which

for testing purposes adds 1

token to the balance of the

given address

Method “insertNewValue”

30

Name Input Response Description

insertNewValue () value
transaction details such

as hash

This is a POST method, which

stores a value to the

Method “getValuesByPublicKey”

Name Input Response Description

getValuesByPublicKey () Public key Json with values

This is a GET method, which

returns values of a specific

user

Method “getValueByTransactionHash”

Name Input Response Description

getValueByTransactionHash () Transaction Hash json with value

This is a GET method, which

returns the value

corresponding to a specific

transaction hash

Middleware Services

This component refers to all the implemented basic blockchain services that include services such as search

and indexing of the P2P network resource, advertising & discovery services, and messaging services for

exchanging messages between the peers.

Know Your Customer

31

Figure 11. Overview of the KYC process for the M-Sec Platform

The KYC service as part of M-Sec Blockchain Middleware Services allows us to have a system where anonymity

is maintained among user choices. The user identification has already been done outside the blockchain

network, while no one inside the blockchain network is aware of the user's real identity. In this way M-Sec

Platform will use KYC service to have services been delivered to users while hiding their true identity from

their service provider or other users.

The M-Sec KYC Solution Concept includes the storage of personal data on an offchain database while the user

is able to connect to the M-Sec Platform (and the blockchain network) using a special ID not relevant to his

real identity. So the User Verification is conducted by an External Certificate Authority before accessing the

system while the user uses the hash ID provided to him to interact with the System, as shown in the Figure 11.

Additionally, we have integrated the feature of the Expiration date. The System maintains an Expiry Date of

users in the blockchain network. This information is stored within the smart contracts not in an external

centralized database.

IPFS: InterPlanetary File System

Aiming to a more decentralized design we integrated blockchain with IPFS, a peer-to-peer version-controlled

protocol and filesystem, run by multiple nodes, storing files submitted to it28. It combines distributed Hash

Tables, Block Exchanges and Merkle Trees.

Using middleware, users are able to upload content to IPFS and place its unique hash code (address of the file)

to the smart contracts running on Quorum blockchain. If we use a central database for storage, we benefit

from the high throughput but this centralization does not coincide with the decentralized nature which

blockchain advocates leading to a Single Point of Failure (SPOF) of the whole application. Facing the

aforementioned drawback, IPFS being a peer-to-peer (p2p) file sharing system and Blockchain’s

28 Chen, Y., et al.: An improved P2P file system scheme based on IPFS and Blockchain. Big Data (Big Data), IEEE
International Conference on (2017).

32

complementary component, settled exceptionally the SPOF problem, furnishing low latency and data

distribution.

On-chain, off-chain data and access control

One of our goals is to design a blockchain-based decentralized content marketplace, which enables trustless

disintermediation between sensor owners (and more generally data owners) and consumers. Using a

dedicated created cryptocurrency (M-Sec Token) for payments, a consumer can buy data on the marketplace

without involving a marketplace intermediary. This refers to the research and development of data privacy-

enhancing mechanisms along with data access control and privacy policies that are necessary for the M-Sec

framework. Moreover, it deals with the separation of data, meaning to identify what needs to be pushed on

blockchain and what to remain off-chain, a decision that is always critical when designing blockchain platforms

Transaction Handler

One of the main and most important features of the Quorum is the private transaction mechanism.

Transaction privacy is achieved by using the Ethereum Transaction Model and enhancing it with new

parameters that specify the nodes in which the transactions should be published. The Constellation layer of

Quorum that contains the transaction Manager and Enclave module is responsible for the private transaction

handling. All the public transactions follow the already established p2p Ethereum network flow.

Additional mechanisms are implemented that:

i. allow only authorized users to commit a transaction and have access to the blockchain,

ii. verify the identity of user using cryptography algorithms,

iii. in case he is about to receive some data/service in exchange of M-Sec Tokens it is verified

that he has already made the purchase.

The Transaction Handler could be regarded as a flow providing a layer before blockchain that performs a first

process of the potential transactions to formulate them and optimize and verify the content to be inserted in

the blockchain.

Upload Handler

This part of the Middleware Services provides functionalities for efficiently performing actions related to

Assets. As an asset we could consider a file, a multimedia item, a dataset that could be described with a

predefined set of fields such as:

• Title

• Timestamp of start

• Timestamp of end (whether applicable)

• Owner/Creator name (or Address)

• Price in M-Sec Tokens

• Description

• Location (latitude and longitude)

33

• URL related to the storage of the asset

All these functionalities are related to Smart Contracts in which we have defined Solidity structs keeping record

of uploaded assets/items and we have additionally define related fields for metadata. These functionalities

include:

• Uploading of an item by providing its details, as specified previously so it can be registered to the Item

Manager Smart Contract.

• Browsing through all the available items registered in the smart contract.

• After specifying some criteria, the user is able to view an asset and its metadata.

Write/Update Metadata of Asset

This service is strongly connected to the Transaction Handler. As an indicative case, only the authorized users

are allowed to update the metadata of an item. The user who has the right to update is the owner of the item

or a user with a specific permission. The service handles the communication with the smart contracts and

checks the rights of a user.

Package Information & Installation Instructions

Required Tools and dependencies

• Truffle Suite

• Solidity Programming Language

• Quorum Blockchain

Install Truffle Suite

Truffle suite:

npm install truffle -g

More installation instructions could be found in the following link: https://www.trufflesuite.com/truffle

Install Solidity

Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io.

Install Quorum Blockchain Network

https://github.com/synechron-finlabs/quorum-maker

https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

Licensing

Quorum, the go-ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser

General Public License v3.0

Solidity is licensed under GNU General Public License v3.0

34

API: Middleware Services exposed methods

Method “createNewAccount” M

Name Input Response Description

createNewAccount()
String userName,

String password

{"userName":"testNickName",

"password":"testPassword",

"publicKey":"0x…",

"privateKey":"0x…"}

This is a POST method,

which allows the creation

of a new account provided

the username and

password

Figure 12. Example call of createNewAccount function, using Postman

35

Method “uploadPhotoToIPFS”

Name Input Response Description

uploadPhotoToIPFS () String publicKey, photo json
This is a POST method, which

uploads a photo to IPFS

Method “uploadDataToIPFS”

Name Input Response Description

uploadDataToIPFS ()
String publicKey,

datatype, data
json

This is a POST method, which

uploads data to IPFS

Method “freezeMySensor”

Name Input Response Description

freezeMySensor ()
publicKey, sensorid,

authorization details
Boolean success

This is a POST method, which

allows suspension of sensors

owned by users, only when

having sufficient

authorization details

Method “freezeMyAccount”

Name Input Response Description

freezeMyAccount ()
publicKey,

authorization details
Boolean success

This is a POST method, which

allows suspension of a users’

account, only when having

sufficient authorization

details

Method “freezeAccountByAdmin”

Name Input Response Description

freezeAccountByAdmin ()
publicKey,

authorization details
Boolean success

This is a POST method,

which allows suspension of a

users’ account, only when

having sufficient

authorization details

36

Method “freezeSensorByAdmin”

Name Input Response Description

freezeSensorByAdmin () filters [location, time] json (details, urls to IPFS)

This is a POST method, which

allows suspension of sensors

owned by users, only when

having sufficient

authorization details

Trust & Reputation Management

Introduction

Trust and Reputation (T&R) models have been proposed by many researches as an innovative solution for
guaranteeing a minimum level of security between two entities of a distributed system that want to have a
transaction or interaction. Thus, many studies, works and models have been designed, carried out and
developed in this direction, leading to a current solid research field on which both academia and industry are
focusing their attention. Many methods, technologies and mechanisms have been proposed in order to
manage and model trust and reputation in systems such as P2P networks29, ad-hoc ones30, wireless sensor
networks31 or even multi-agent systems32. Such methods have been used in many environments like P2P
networks, Wireless Sensor Networks (WSN), Vehicular Ad-hoc Networks (VANETs), Identity Management
Systems, Collaborative Intrusion Detection Networks (CIDN), Cloud Computing Systems, Application Stores
and of course the IoT.

T&R management is a very useful and powerful tool in environments where a lack of previous knowledge
about the system can lead participants to undesired situations, specifically in virtual communities where users
do not know each other at all or, at least, do not know everyone. It is in those cases where the application of
trust and reputation mechanisms is more effective, helping a peer to find out which is the most trustworthy
or reputable participant to have an interaction with, preventing thus the selection of a fraudulent or malicious
one. Most of the current T&R models in the literature follow four general steps which are described by Marti
and Garcia-Molina33 (Figure 15):

1. Collecting information about a certain participant in the community by asking other users their opinions
or recommendations about that peer.

2. Aggregating all the received information properly and somehow computing a score for every peer in the
network.

29 F. Almenarez, A. Marin, C. Campo, C. Garcia, “PTM: a pervasive trust management model for dynamic open
environments”, First workshop on pervasive security and trust, Boston, USA; 2004.
30 M. Moloney, S. Weber, “A context-aware trust-based security system for ad hoc networks”, Workshop of the 1st
International Conference on Security and Privacy for emerging areas in communication networks, Greece; 2005, pp. 153–
60.
31 Boukerche, L. Xu and K. El-Khatib, “Trust-based security for wireless ad hoc and sensor networks”, Computer
Communications 2007.
32 J. Sabater and C. Sierra C, “REGRET: reputation in gregarious societies”, Proceedings of the 5th International Conference
on Autonomous Agents, Canada, 2001.
33 S. Marti and H. Garcia-Molina, “Taxonomy of trust: categorizing P2P reputation systems”, Computer Networks 2006.

37

3. Selecting the most trustworthy or reputable entity in the community providing a certain service and
effectively having an interaction with it, assessing posteriori the satisfaction of the user with the received
service.

4. Punishing or rewarding according to the satisfaction obtained, adjusting consequently the global trust (or
reputation) deposited in the selected service provider.

Figure 13: General steps followed in T&R models.

Currently, the idea of using a T&R engine on top of the Blockchain Middleware Services and the IoT
Marketplace (already described in the previous sections) is being investigated. Such an engine would enhance
the security mechanisms of M-Sec and make it possible to evaluate the actual content being shared through
the Blockchain and the Marketplace, thus ensuring the trustworthiness of the several actors participating in
the exchange or sharing of information, data and services.

The M-Sec T&R model (M-Sec T&RM)

Different models manage concepts such as Trust or Reputation in many different ways. Although there are
some generic data structures for the domain of T&R provided for example by the Open Reputation
Management Systems (ORMS) of OASIS34, there are no standards for concepts like Trust and Reputation. In
this subsection we try to provide some clear definitions of the main concepts that build up the M-Sec T&R
model, and the main features that characterize it. In M-Sec T&RM we define Trust and Reputation as follows:

• Trust: The expectation that an interaction will be satisfactory based on our personal experience.

• Reputation: The belief that an interaction will be satisfactory based on the experience of our social circle.
Node A will have a high Trust index for Node B if the services provided from Node B to Node A have been
evaluated from Node A positively. Node A will have a high Reputation index for Node B if the services provided
from Node B have been evaluated from the social circle of Node A positively.

Definitions

The distinction between a trust and a reputation model is not always clear. However, in our opinion, those
models making an explicit use of other participants’ recommendations could be categorized as reputation
models while the rest could be considered just as trust models.

34 OASIS: https://www.oasis-open.org/committees/orms

https://www.oasis-open.org/committees/orms

38

Let’s assume that actor-1 wants to find out some social characteristics of actor-2 for a specific service offered.
The following terms can then be defined:

• Popularity (P): A counter which monitors how many times actor-2 has received or may receive a request

(how many “hits” it has). The Popularity Index is an accumulative and comparative indicator, and is used

to determine the stability of Reputation and Trust.

• Trust (T): The belief of actor-1 that actor-2 is going to deliver the correct service based on previous

interactions of actor-1 with actor-2. The Trust Index of actor-2 provided by actor-1 is a property which

states how many times actor-2 has successfully shared its services with actor-1. Trust is “subjective”,

because it is estimated from perspective of the individual trustor (actor-1 in this case).

• Reputation (R): The belief of actor-1 that actor-2 is going to deliver the correct service based on previous

interactions of other actors. The Reputation Index can be calculated from the Trust that other actors

(apart from actor-1) have on actor-2. In other words, this metric determines the belief of others on an

actor and is useful especially when actor-1 does not have enough data to extract a Trust Index for actor-

2 (because e.g. there are no interactions between the two actors yet).

• Reliability (R’): An absolute indicator of the performance of the actor that quantifies its efficiency to offer

successfully its services relatively to its ideal or normal operation. The Reliability Index should be based

on criteria like: response time upon request, ability to communicate, quality of service provided, etc.

• Dependability (D): A social measure combining all the above social measures. It can be simply derived by

the expression 𝑫 = 𝒂 ∙ 𝑻 + 𝒃 ∙ 𝑹 + 𝒄 ∙ 𝑹′ + 𝒅 ∙ 𝑷 where a, b, c and d (non-negative integers) are the

weights of the measures and 𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏. For this calculation, Popularity has to get normalized.

By selecting the appropriate weights, we can provide the expression of the Dependability Index that we

want. For example, when there are only a few interactions between actor-1 and actor-2, then the Trust

Index should have a low weight and the Reputation Index should have a high weight. This means that the

weights should change dynamically and be set according to the users or developers preferences.

General Features

Reputation connects closely to the concept of Trust, but there is a clear difference, which can be illustrated by
the following two scenarios:

• Actor-1 trusts actor-2 because Actor-2 has a good Reputation. This reflects that Reputation can be used

to build Trust.

• Actor-1 trusts actor-2 despite the bad Reputation of Actor-2. This reflects that even if actor-1 knows the

Reputation of actor-2, actor-1 has its own private knowledge (e.g. direct experience with actor-2) which

is considered to be more important.

Generally, an actor can be evaluated only by information gathered from other actors. Its Dependability can be
calculated by each and every other actor of the community (a subjective estimation) or by the whole system
(a more, but not totally, objective estimation). Depending on its (subjective or objective). Both big and small
time-windows are used to quickly detect malicious or unsatisfactory behaviour and avoid the fast redemption
of blacklisted actors. Moreover, feedback from recent interactions has a higher weight than this of older
actions.

Benevolent actors should have more opportunities than newcomers. As a result, newcomers with 0
interactions with other actors will have Reputation equal to 0. However, an extra rule has to be applied to the
model we have designed to give the opportunity to newcomers that have a low Reputation (because of the
small number of interactions with other actors) to be chosen as service providers at some point and start

39

building their Reputation. For example, 10% of the recommendations from the platform should introduce
newcomers to the rest of the community. The same applies for actors which have low Reputation due to
malicious or unsatisfactory behaviour in the past. In other words, this rule enables the social integration and
reintegration of the actors to the system. Moreover, this rule is necessary for the first moments of the social
community that may be born from M-Sec, as the network, at its initial state, will not have any actors with high
Reputation.

It should be noted that, in contrast with many T&R models, we choose to use different Trust and Reputation
scores for different services provided by the members of the network. This feature helps as face quite many
security threats. For example, abuse of a high achieved Reputation is easily avoided.

Calculation of Trust & Reputation

In M-Sec T&RM, only the idea of subjective Trust is modelled, as we claim that subjectiveness is embedded in
Trust’s meaning. Strong Trust on an actor cannot and should not be affected by claims of a third party. In order
to model Trust, the experiences based on which the Trust is calculated need to be modelled. Thus, we need
memory. For that purpose, the M-Sec Blockchain can be used to store the “social” interactions between actors
and the evaluations of the corresponding services. Some crucial attributes that have to be stored in these Log
Files are:

• Satisfaction (s): This value is essentially a subjective QoS indicator. The Satisfaction is automatically

derived by the absolute values of the service based on their correctness. For example, a sensor that

suddenly reports a really high temperature will be assigned a satisfaction rating based on the correctness

of this report. If there is a fire, the Satisfaction is high, but if the is not, the Satisfaction is zero. Since an

actor that regulates the alarms can consult more than one sensors, a malicious or faulty sensor will quickly

lose any trust. If the sensor is fixed, the Social Reintegration part of the system will allow it to build trust

again.

• Weight (w): This is a value indicating how crucial the service is for the well-being of the actor. It is used

in order to prevent a malicious actor from providing a minor service well and then exploiting the built

Trust and providing a crucial service poorly. Due to this value, it is difficult for the Trust index to increase

just because of minor services, whereas it can drop quickly in case of a crucial service with low quality.

• Fading factor (f): When new interactions take place, the importance of older ones should decrease. The

fading factor addresses this issue and forces peers to stay consistent with their previous behaviour. Old

interactions have lower fading factor values, so an actor cannot misbehave relying on its good history.

The fading factor makes the Social Reintegration of ex-malicious nodes possible, meaning that if they

become benevolent, it is possible for them to get a second chance and form new ties with the network.

Of course multiple incidents of misbehaviour can get an actor permanently black-listed. This fading factor

can be set by the system administrator so that the actors take under consideration the last N interactions

with any other actor.

When an actor wants to calculate the Trust Index of another one, it looks into the appropriate Log Files in the
Blockchain and calculates the trust value as the weighted average of the log entries using:

𝜇𝑡
𝑘 =

∑ (𝑠𝑖 ∙ 𝑤𝑖 ∙ 𝑓𝑖)𝑁
𝑖=1

𝑊
 (1)

where W is the normalization co-efficient which ensures that the trust value will be between [0,1] and is
calculated by:

40

𝑊 = ∑ (𝑤𝑖 ∙ 𝑓𝑖)
𝑁

𝑖=1
 (2)

The mean value (μ) is a measure of the overall observed behaviour of the actor and indicates the expected
satisfaction value of the next interaction. However, it is needed to know how confident we can be about the
value of μ i.e. how much the satisfaction from the service may actually deviate from μ. Thus, the standard
deviation (σ) of the behaviour is also calculated. To reduce the computational overhead, the calculation of the
later occurs simultaneously with the calculation of the mean value following the formula:

𝜎𝑡
𝑘 =

√∑ (𝑠𝑖
2 ∙ 𝑤𝑖 ∙ 𝑓𝑖)𝑁

𝑖=1 ∙ 𝑊 − (∑ (𝑠𝑖 ∙ 𝑤𝑖 ∙ 𝑓𝑖)𝑁
𝑖=1)

2

𝑊
 (3)

Finally, we define Trust as:

𝑻𝒌 = 𝝁𝒕
𝒌 − 𝝈𝒕

𝒌 (𝟒)

To sum up, μ shows the satisfaction that actor-1 should expect from actor-2, while σ shows how predictable
the behaviour of actor-2 is. This means that if T = 0.5 then there is an 84% probability that the satisfaction for
the service will be 0.5 or greater. That way the service providers that are not consistent and have an ever
changing and oscillating behaviour will have lower Trust indexes even if their μ value is higher.

Figure 14: Calculation of the Trust Index of an actor.

Similar approach is being followed to calculate the Reputation Index, although this metric needs to extract

more interactions logs from the Blockchain.

Testing

TRMSim-WSN

In order to test our T&R model, we used TRMSim-WSN35, a simulator for T&R models. The TRMSim-WSN is a

Java-based T&R models simulator aiming to provide an easy way to test a trust and/or reputation model over

WSNs and to compare it against other models.

The TRMSim-WSN is, as far as we know, the state-of-the-art simulation platform for confidence-renowned

systems. It is aimed at simulating algorithms for reputation and trust management in WSN systems, but the

same principles can apply to IoT systems in general. The simulation can be run over a single randomly

generated WSN or over a set of networks. The user is able to define parameters of the network, such as the

percentage of clients and that of malicious nodes. Network topologies may also be loaded from and saved to

XML files. Sample trust and reputation models have been included and an API is offered which provides a

35 F. G. Marmol and G. M. Perez, “TRMSim-WSN, Trust and Reputation Models Simulator for Wireless Sensor Networks”.

41

template for the users to help them easily load new T&R models to the simulator36. For the tests, parameters

that can be configured are: number of executions, number of random networks to be tested, % of Malicious

Actors, Collusion between Malicious Actors, Oscillating behaviour of actors, etc.

To evaluate our T&R model we compared it with three predominant (as of today) T&R models (Eigentrust,

PeerTrust and PowerTrust) as well as with a relatively new system known as BTRM (Bio -Inspired Trust and

Reputation Model) that applies a biological algorithm known as Ant-Colony System.

Figure 15: TRMSim-WSN.

We run simulations both in simple networks and in networks with dynamic entry or oscillating behaviour of

actors. Measurements of the average satisfaction were made at various percentages of malicious actors (10%,

50% and 90%). The results are given in the next figure.

Figure 16: Normal Network Comparison

36 F. G. Marmol, “Implementing and Integrating a new Trust and/or Reputation Model in TRMSim-WSN”.

42

From the above, it can be seen that our models performance is comparable to that of the other models (and

in some cases better).

Applying T&R in M-Sec with Santander Open Data Platform

The model can be implemented as a mechanism integrated into the M-Sec Blockchain Middleware. The main

requirement for the mechanism to provide results is for an evaluation mechanism to also be in place, close to

the point where the services are first provided.

As it can be seen in the figure below, such an evaluation mechanism does exist in platforms such as the

Santander Open Data Platform. Features that enable end-users to evaluate a service (through a like-dislike

option, a 5-stars system, or other), can be used to identify the Satisfaction metric that was recognized in the

previous subsections. This value is essentially the subjective QoS indicator needed to “feed” the T&R model

and extract the higher level metrics that identify the Trust over a service provider or a specific service.

At this level, tests with real evaluation data can be initiated to enable the functionality of the T&R engine and

initiate its validation in the given scenarios.

Figure 17. Evaluations from the Santander Open Data Platform as input to T&RM

43

Crypto Companion Database

General Description of the Prototype

Since it is necessary that sensitive data stored has to be secured and private, the CCDB is proposed as a parallel

system to the blockchain for the encrypted storage. The blockchain will save a hash created from the

encrypted sensitive data, and the CCDB will store the sensitive data encrypted together with the hash. The

hash will be used to have a connection between the transaction in the blockchain and the data stored in the

database.

In order to be compliant with the GDPR, the hash stored in the Blockchain is not going to be created from

original but the encrypted data.

The CCDB will encrypt the data with an asymmetric public/private key pair.

This data could only be accessed by the owner, which will have to be authenticated, and the authorized

operators allowed by the owner. The authorization is not part of the CCDB as it will be carried by the Blockchain

itself, so the component will ask the Blockchain for it.

With this database insertion, deletion and consultation of the information will be possible. The modification

process will be a bit more complex as the hash that holds the link between the blockchain and the database

will change if the information changes, so if a modification is needed it will be done by deleting the old

information and inserting the new one.

Each application in the ecosystem can have its own CCDB; therefore data will always be distributed. In order

to make it accessible and replicated if wanted, the key pair can be replicated on any system by providing the

12-word mnemonic. To reduce the amount of data held by a single database, the location of specific

information can be stated in the blockchain transaction.

The following figure shows how data can be accessed:

44

Figure 18. Access to distributed data.

Components

The components used to create the CCDB are the following:

• Crypto Module

• Companion DB Module

The evolution of the Companion DB Module with the Crypto Module makes a secured database, as the data

will be encrypted by an asymmetric key pair, so it will be called Crypto Companion Database.

The Crypto Module will be used independently on any type of database (currently only supports MongoDB)

and in any software because it provides an API to encrypt/decrypt data. The API of this module is designed as

a private API with no access to the internet, so it does not provide any security.

The Companion DB Module has a public API that can be used to save, delete and query data. It also provides

an authentication layer in order to secure the users that access the data. This module also provides an

authorization layer in order to know if the owner of the data allows an operator or external user to see it. This

authorization layer will make use of the Smart Contracts on Blockchain described in the previous sections.

45

In the following diagram an overview of the components is shown:

Figure 19. Crypto Companion Database Module components.

Crypto Module

This module allows a user to encrypt and decrypt data.

This module has two components:

• The Crypto API, that is in charge of encrypts and decrypts the data with the keys stored in the KeyStore

DB.

• The KeyStore DB, that is a MongoDB that holds the key pairs to encrypt and decrypt data by the users.

The Crypto API provides:

• A method to create an asymmetric key pair:

The creation of the public/private key pair can be made by providing a 12-word mnemonic, allowing

replicating the keys in other applications. It will be useful if the user wants to authorize always with

the same public/private key, and also will allow a distributed system to be able to decrypt data in a

distributed way.

46

Figure 20. Sequence diagram. Enrolment in Crypto Module.

• A method to encrypt data:

This endpoint will take the private key of the user with the hash provided and encrypt the string with

the data in the payload. If the user does not exists it will return the data sent as it is.

47

Figure 21. Sequence diagram. Data encryption in Crypto Module.

• A method to decrypt data:

This endpoint will take the private key of the user with the hash provided and decrypt the string with

the data in the payload. If the user does not exist, it will return the data sent as it is.

48

Figure 22. Sequence diagram. Data decryption in Crypto Module.

• A method to delete the keys:

This endpoint will delete the public/private keys associated with the hash provided.

49

Figure 23. Sequence diagram. Disenrollment in Crypto Module.

The API of this module is intended to be private and only provide mechanisms to encrypt and decrypt data, so

it does not provide authentication.

The KeyStore DB will store the public and private keys created by the Crypto API with a hash that will act as an

identifier.

So the keys stored in the database will look like:

• hash: 32-64 hexadecimal string identifying the user.

• privateKey: The Private key generated by an asymmetric key algorithm that matches the public key.

• mnemonic: a set of 12-word that is used to create an account into the blockchain and to generate the

privateKey.

• blockchainOwnerKeys: Object provided by the creation of a user in the blockchain.

Crypto Companion Database Module

This module allows a user to have an authentication system and save data encrypted. It also provides other

users with the possibility to read data from a user if authorized.

This module has two components:

• The CCDB API, is in charge of authentication and managing all the data providing methods to save, read

and delete data in the database.

• The CCDB, is a MongoDB that stores the encrypted data.

The CCDB API provides:

Authentication API.

• A set of methods to register, update user information and recover a password.

50

Figure 24. Authentication API in Crypto Companion Database Module.

• A method to register:

The registration of a user will also trigger the enrolment on the Crypto Module, so the keys will be

created during the registration.

Data Management API.

• A method to enrol:

The creation of the public/private key pair can be made by providing a 12-word mnemonic, allowing

replicating the keys in other applications. It will be useful if the user wants to authorize always with

the same public/private key, and also will allow a distributed system to be able to decrypt data in a

distributed way.

51

Figure 25. Sequence diagram. Enrolment in CCDB Module.

• A method to disenroll:

This endpoint will delete all data associated with the user along with its public/private keys.

Figure 26. Sequence diagram. Disenrollment in CCDB Module.

52

• A method to read data:

These endpoints will let an owner or an authorized user to read the encrypted data.

Figure 27. Sequence diagram. Read data in CCDB Module.

• A method to save data:

This endpoint will let an owner to save encrypted data.

This method has evolved in order to be more compliant with the GDPR.

Before the user should call the blockchain outside and provide a hash in order to link the information

between the CCDB and the blockchain. Now, the companion database will take care of the encryption

and the hash generation, making it more secure and having a hash in the blockchain that will be

generated from encrypted sensitive data, not the raw sensitive data.

53

Figure 28. Sequence Diagram. Save data in CCDB Module.

• A method to delete data:

These endpoints will let the owner of the data to delete it.

54

Figure 29. Sequence Diagram. Delete data in CCDB Module.

• A method to authorize a user:

This endpoint will let an owner to authorize another user to decrypt its data.

Figure 30. Sequence diagram. Authorize in CCDB Module.

• A method to de-authorize a user:

55

This endpoint will let an owner to de-authorize another user to decrypt its data.

Figure 31. Sequence diagram. Remove authorization in CCDB Module.

• A method to request authorization to a user:

This endpoint will let an external user to request authorization to access data to the owner.

Figure 32. Sequence diagram. Request authorization in CCDB Module.

56

Package Information & Installation Instructions

Required Tools and dependencies

Following a list of the required tools and dependencies of the modules:

• Docker (it comes with, Kubernetes, Kitematic, Docker Manager, …)

• Docker Quickstart Terminal

• Docker Toolbox (for Windows Users only)

• Mongo DB

• Oracle VM Virtualbox

• Nodejs v10.17.0

• NPM 6.11.3

• Git

The version indicated in some tools/dependencies are important for compatibility. If the versions are not

these, it might raise some problems.

In order to ease the installation, proceed with the established order in the list.

Install Docker

The installation can be found in the Docker’s webpage https://docs.docker.com/v17.09/engine/installation/,

but following there is a list of the main steps and commands for Windows and Ubuntu.

Windows 10: (Source: https://docs.docker.com/v17.09/docker-for-windows/install/#start-docker-for-

windows)

In order to install Docker, we have to follow the next steps:

1. Download Docker from the Docker Hub:

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe

2. Double-click Docker for Windows Installer.exe to run the installer.

3. Follow the instructions on the installation wizard to accept the license, authorize the installer, and

proceed with the install.

When prompted, authorize the Docker Desktop Installer with your system password during the install

process. Privileged access is needed to install networking components, links to the Docker apps, and

manage the Hyper-V VMs.

4. Click Finish on the setup complete dialog and launch the Docker Desktop application.

5. Docker will not start automatically. To start it, search for Docker, select the app in the search results,

and click it (or hit Return).

Ubuntu Xenial 16.04 LTS: (Source: https://docs.docker.com/v17.09/engine/installation/linux/docker-

ce/ubuntu/)

A. Set up the repository

1. Update the apt package index:

sudo apt-get update

2. Install packages to allow apt to use a repository over HTTPS:

https://docs.docker.com/v17.09/engine/installation/
https://docs.docker.com/v17.09/docker-for-windows/install/#start-docker-for-windows
https://docs.docker.com/v17.09/docker-for-windows/install/#start-docker-for-windows
https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/

57

sudo apt-get install apt-transport-https ca-certificates curl software-

properties-common

3. Add Docker’s official GPG key:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add

-

Verify that you now have the key with the fingerprint 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C

0EBF CD88, by searching for the last 8 characters of the fingerprint.

sudo apt-key fingerprint 0EBFCD88

pub 4096R/0EBFCD88 2017-02-22

 Key fingerprint = 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

uid Docker Release (CE deb) <docker@docker.com>

sub 4096R/F273FCD8 2017-02-22

4. Use the following command to set up the stable repository.

sudo add-apt-repository \

 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) \

 stable"

B. Install Docker

1. Install the linux-image-extra kernel package:

sudo apt-get update -y && sudo apt-get install -y linux-image-extra-

$(uname -r)

2. Install Docker:

sudo apt-get install docker-engine -y

3. Start Docker:

ludo service docker start

4. Verify Docker:

sudo docker run hello-world

Install Mongo DB

As the Docker was installed in the section above, the installation of the Mongo DB will be as easy as executing

the following command for any operating system:

docker run -p 27017:27017 --name mongo-nest -d mongo:4

Install Node.js and npm

The installation of these two tools is done together and it can be found in the Node.js webpage

https://nodejs.org/en/ , but following there are a list of the main steps and commands for Windows and

Ubuntu.

https://nodejs.org/en/

58

Windows 10:

1. Download the binary from: https://nodejs.org/dist/v10.17.0/

2. Install the msi or exe file by double-click.

3. Follow the instructions.

4. Check that Node.js is installed with the command:

node -v

5. Check that npm is installed with the command:

npm -v

Ubuntu Xenial 16.04 LTS: (check

https://github.com/nodesource/distributions/blob/master/README.md#debinstall for further information)

1. Add the NodeSource package signing key:

curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -

2. Install Node.js

sudo apt-get install -y nodejs

Install Git

Extracted from https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Windows 10:

1. Download and install it from https://git-scm.com/download/win

Ubuntu Xenial 16.04 LTS:

1. Execute the following command:

sudo apt install git-all

Download and Run Demonstrator

In order to download and run the demonstrator the following steps have to be performed:

1. Clone the GitHub project in a selected folder:

git clone https://github.com/jordiescudero/wl-bc-cs/

2. Execute the command from the installation of Mongo DB:

docker start mongo-nest

3. Go to the root of the project:

npm run start

https://nodejs.org/dist/v10.17.0/
https://github.com/nodesource/distributions/blob/master/README.md#debinstall
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/jordiescudero/wl-bc-cs/

59

4. The base URI for all the interface will be: http://localhost:3000/api/

5. The Swagger UI can be found at: http://localhost:3000/api/docs/#/

User Manual

As stated in the section “Companion DB Module” the APIs that will be published and used will be the

Authentication API and the Data Management API.

The Swagger UI provides enough information to let the developer know how to use this API, but some

examples were put together as a starting point.

• GET /companionDB/read/{dataId}

curl -X GET

"http://localhost:3000/api/companionDB/read/hashhashhashhashhash" -H

"accept: application/json"

• POST /companionDB/save

curl -X POST "http://localhost:3000/api/companionDB/save" -H "accept:

application/json" -H "Content-Type: application/json" -d "{ \"name\":

\"Name\", \"email\": \"email@email.com\", \"birht_date\": \"01/01/2001\",

\"gender\": \"Other\", \"city\": \"Barcelona\"}"

 The json beautified:

{

 "name": "Name",

 "email": "email@email.com",

 "birht_date": "01/01/2001",

 "gender": "Other",

 "city": "Barcelona"

}

• DELETE /companionDB/delete/{dataId}

curl -X DELETE "http://localhost:3000/api/companionDB/delete/hashhashhash"

-H "accept: application/json"

• POST /companionDB/authorise/{hash}

curl -X POST

"http://localhost:3000/api/companionDB/authorise/hashhashhash" -H "accept:

application/json" -H "Content-Type: application/json" -d "{ \"authHash\":

\"authorisedHash\"}"

 The json beautified:

http://localhost:3000/api/
http://localhost:3000/api/docs/#/

60

{

 "authHash": "authorisedHash"

}

Licensing

Licensing for all the components/software used:

• Docker is under Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0) form

more detail go to https://www.docker.com/legal/components-licenses.

• Mongo DB is under Server Side Public License (https://www.mongodb.com/licensing/server-side-

public-license)

• NPM is under Artistic License 2.0 (https://www.npmjs.com/policies/npm-license)

• Git is under GNU General Public License version 2.0 (https://opensource.org/licenses/GPL-2.0)

• Oracle VirtualBox is under GNU General Public License, version 2 (https://www.gnu.org/licenses/old-

licenses/gpl-2.0.html)

• Software developed is under MIT (https://github.com/jordiescudero/wl-bc-

cs/blob/master/LICENSE)

2.3 Interactions with other FGs

The following figure presents all the interactions of the Secured & Trusted Storage FG with other components

of the M-Sec solution. The Annex also presents a more “global” view, with the positioning of the FG within the

whole M-Sec system.

https://www.apache.org/licenses/LICENSE-2.0
https://www.docker.com/legal/components-licenses
https://www.mongodb.com/licensing/server-side-public-license
https://www.mongodb.com/licensing/server-side-public-license
https://www.npmjs.com/policies/npm-license
https://opensource.org/licenses/GPL-2.0
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://github.com/jordiescudero/wl-bc-cs/blob/master/LICENSE
https://github.com/jordiescudero/wl-bc-cs/blob/master/LICENSE

61

Figure 33. Interaction of the Secured & Trusted Storage FG with other FGs

Interaction with IoT Marketplace FG

The Secured and Trusted Storage FG does not generate data from itself, it is used as a storage system to store

sensitive data, and the same happens with the IoT Marketplace FG, it is used to store/gather sets of

anonymized data in order to sell it.

So, both FGs having the need to be fed from external applications implies that the integration between them

is not direct, and they need another component to link them together.

 Although, taking as an example the Use Case 2, we can see that the Worldline Connected Care Assistance

application save the activities of all IoT sensors into the Secured & Trusted Storage FG, then the application

registers all sensors to the IoT Marketplace FG providing a link to retrieve data.

In the following figure, the flow of the data can be seen, showing the integration of both FGs having as a

communication component the Worldline Connected Care Assistance.

Figure 34. Example of data flow between Secured & Trusted Storage FG and IoT Marketplace FG

62

Interaction with Security city data Access FG

As mentioned before in the section ‘Interaction with IoT Marketplace FG’, the ‘Secured & Trusted Storage FG’

does not generate data from itself, it is used as a storage system to store sensitive data.

The Security city data Access FG is used to gather information from IoT sensors, do some modifications,

standardizations and send it elsewhere.

The data sent by the Security city data Access FG could be sent directly to the Secured & Trusted Storage FG,

but as the Security city data Access FG does not have as a purpose to act as a data manager, some other

application have to be the link between them.

Taking as an example from Use Case 2, the Worldline Connected Care Assistance application save the activities

of all IoT sensors coming from the Security city data Access FG into the Secured and Trusted Storage FG.

In the following figure the integration from Devices FG to Secured & Trusted Storage FG can be seen.

Figure 35.Example of data flow between Secured & Trusted Storage FG and Security city data Access FG

Another point of integration with Security city data Access FG was implemented to facilitate different use

cases (mainly Use Case 3, Use Case 4 and Use Case 5) and end users of the pilots. To this direction, a new

component was developed, namely “SOXFire – Blockchain – IoT Marketplace Bridge” allowing registration of

sensors, purchase/exchange of data and visualization of data. An overview of this component is shown in the

following figure.

63

Figure 36. Overview of SOXFire – Blockchain - IoT Marketplace Bridge

A more technical figure is provided below, displaying details of this integration.

Figure 37. Technical overview of SOXFire – Blockchain – IoT Marketplace Bridge

5

 nte a on bet een i e and a et la e
ICCS/KEIO

IN
TE

G
R

AT
IO

N
 &

 V
A

LI
D

AT
IO

N

64

Interaction with Application FG

Following the example of the Use Case 2 and the application Worldline Connected Care Assistance, the

Secured & Trusted Storage FG is fully integrated with the Application FG. The application uses this FG to store

all the information of the activities from the IoT devices. To have a clear picture, the information from the IoT

devices (Devices FG) is sent to the broker of the company (Caburn); this information is gathered, filtered and

standardized by the Eclipse sensiNact Platform (Secure City Data Access FG); and finally the application saves

it to the Secured & Trusted Storage FG.

In the following figure the flow of all the data and the integrations can be seen.

Figure 38. Example of data flow between Application FG and Secured & Trusted Storage FG

Interaction with End-to-End Security FG

The integration between these two functional groups will be to make use for the Authentication of the End-

to-End Security FG in order to be able to use the same user for all the FGs.

Investigations to perform the integrations have been made. The goal is to integrate the End-to-End security at

the level of the Functional Group API, so it will not be needed to have authentication in each component

inside, easing the implementation and integration of inner components.

As described in detail in D4.8, the integration of IoT Marketplace FG and End-to-End Security FG enable clients

of the marketplace to be authenticated either as the owner of devices, owner of data, or simply a consumer.

Middleware and Blockchain components facilitate this integration and indirectly support it, leaving no

potential for unauthorized access and enhancing overall security.

65

2.4 Common API

In order to allow the communication and integration with other FGs, services, assets, several methods were

developed. These methods are exposed via a RESTful API, while respective clients have been developed to

facilitate the integration process and documentation with examples and indicative architecture figures and

snippets.

To this direction, a common API was developed and all relevant endpoints have been added in a common URL

in order to ease the use of it.

After a series of steps, we ended in some considerations for a method to be useful on the common API:

• The use of the method in a high level usage for a final user.

o For example, using the save method/endpoint from the Crypto Companion Database will save data

and link it with the blockchain.

• Forbid to bypass steps.

o It is not allowed to send information directly to the blockchain, bypassing the CCDB. Saving to the

blockchain directly will bypass the steps to encrypt and save the data into the Crypto Companion

Database and will not be compliant with the GDPR.

• Only one method/endpoint can do one action/functionality.

o If two methods/endpoints of save are provided, one from CCDB and one from blockchain, it will

confuse the user, and one of them will bypass some needed steps.

To clarify, if the user wants to use the Secured and Trusted Storage FG, it will not use calls directly to the

blockchain, because with the changes made in order to be compliant with the GDPR, the interaction with the

blockchain will be managed by the Crypto Companion Database, meaning that reading or saving information,

creating an account and other more specific endpoints are not shown in the common API. In the following

figure, the summary of Security & Storage Functional Group API is presented.

66

Figure 39. Security & Storage Functional Group API

67

3. Conclusion

This deliverable D4.6 is the final version of the deliverables related to the task T4.3. Following the original M-

Sec architecture already introduced and discussed in previous reports such as Deliverable 3.3, it can be

identified that the Secured and Trusted Storage FG covered in this document is one of the core FGs required

to facilitate the functionalities of several of the UCs covered by the project.

The components of the FG, its functionalities, as well as its interactions and integrations with other

components as parts of a unified architecture is also documented in detail. Similarly, enough information is

provided related to the usage of the available tools, as well as of a common API that exposes all the capabilities

of the FG

Table 7: Demonstrators and their correlation with Use Case Pilots

Demonstrator Type Use Case Pilots Purpose

Blockchain

Framework

Software-based

solution (Solidity)
Use Case 2

Support encryption and security

features by interacting with other

components

Middleware Services
Software-based

solution (Javascript)
Use Cases 2,5

Support end users and other

components

Trust & Reputation

Management

Software-based

solution (Javascript)
Use Case 5 Evaluate transaction and media assets

Crypto Companion

Database

Software-based

solution (Javascript)
Use Cases 2

Store encrypted sensitive data with a

link to the Blockchain.

68

Annex

Figure 40. The M-Sec Architecture (T4.3 FG in yellow)

