Multi-layered
Security
Technologies

for hyper-connected
smart cities

Cookbook
December 2020

Grant Agreement No. 814917

Multi-layered Security technologies to ensure hyper-connected
smart cities with Blockchain, BigData, Cloud and loT

Project acronym M-Sec

Deliverable Cookbook

Work Package 5

Submission date December 2020

Deliverable lead TST / KEIO

Authors Jin Nakazawa (KEIO), Arturo Medela (TST)
Internal reviewer F6S, WU, CEA

Dissemination Level Public

Type of deliverable

Version history -v00, 29/March/2020, Jin Nakazawa, Table of Contents, Full Draft
-v01, June/2020, Arturo Medela, Initial contribution
-v02, December/2020, Arturo Medela, Contents adapted, editing
-v03, December/2020, final version

Pt
B oo 5
e ‘ % ' @ @ III|.I TST == s g
cce

Keio University
@ NTTEAST g Y N U KRR A W57 T LA @ mllag m’eg-a

. . WASEDA

University

% &
T, a6
by o
15 G

H

The M-Sec project is jointly funded by the European Union’s Horizon 2020 research and innovation

programme (contract No 814917) and by the Commissioned Research of National Institute of Information and
Communications Technology (NICT), JAPAN (contract No. 19501).

Table of Contents

L] o] (=l o)l 0] 01 1=T0) £ O TSP UUPTO TSROSO 3
LIST OF TaBIES ...ttt ettt sttt e e bt e e s bt e e bt e e s ab e e s be e e sabeesabe e e ante e s beeeenbeeereeeneeesreeenns 5
[o) B Y= (U U 5
€] (o 11 [VSR 9
T 1Ay e e [N Tot i Te] o DRRT TSP PR PP PRSP 11
o) INY=Tol U] o 1Y PPN 13
1.1 0T devices With INCreased SECUNITYuiiiciiiii i e e e s bee e e s rabee e e eareeas 13
GENEIAI DESCIIPLION .. ettt e et e e e et e e e e et e e e e eeabeee e seabaeeeeeabaeeeeenbaeeeeansaneeeanseeeeannsenas 13

(6] g T o Yo Y aT=T o | £ PPN 14
INSTAllAtioN INSTIUCTIONS ...eoiniiiiiie ettt ettt st e st e st e e s bt e e sabe e e sabeesabeesneeesabeeanns 21

1.2 Intrusion Detection System (IDS) for I0T dEVICESccuuvieeiiiieeeecee ettt e 24
General Description Of the ProtOtYPE ...eiccuiii ittt e e e ree e e e ae e e e eareeas 24

(6] g aT o To Y aT=T o | £ TR PP PPPPPPTPPPPPPPPRS 24
INSTAIAtION INSTIUCTIONS ...ttt et b e st st e it e et e e be e saeesatesabesabeebeenbeenes 26
Cloud and Data LEVEI SECUNITYveieiiiiee ettt e et e e e etee e e e et e e e e e e bte e e eeabaea e e abeeeeeesbeeeeeenseeeeeanseeeeennsenas 27
1.3 Hardware based ENCIYPLIONuuii i e et e e e are e e e e aba e e e eabae e s ennbeeeeenreeas 27
GENEIAl DESCIIPLION 1. ettie ittt e e st e e e et e e e e e be e e e ssabeeeeesabaeeeessbeeeaesaseeeesansteeeennsenas 27
INSTAIIAtION INSTIUCTIONS ...ttt ettt b et st e st e e be e be e sae e saeesabesabeebeenneens 28

1.4 Software-based Threat MONITOIINGccuiii it eete e e e et e e e eette e e e ertee e e snreeeeeanes 31
GENEIAl DESCIIPLION 1. eiiiei ettt e e e et e e e et e e e e e be e e e st eeeeesabaeeeesabeeeeesabeeeesnnsteeeennsenas 31
INSTAIIAtION INSTIUCTIONS ...ttt ettt b e sttt et e e be e be e saeesaee st e sabeebeenbeenes 32

1.5 Privacy Management TOO!o ittt e e et e e e s e e e e et a e e e s atae e e enbaeeeearaeas 34
GENEIAl DESCIIPLION 1.t e e et e e e et e e e e e be e e e eeabeee e e abaeeeesnbteeeesnseeesennsteeeennseens 34
INSTAllAtioN INSTIUCTIONS ..ot s s et e st e s b e e s b e e snr e e sareesneeesareeenne 36

P2P Level Security and M-Sec BIOCKCNAINS........oiiiiiieeee e e e e e e e e e e e e e e e snnnnes 37
1.6 Blockchain Framework and MiddlewWare ServiCes.........ovueiiiieeiieeriieeeriee e 37
GENEIAl DESCIIPLION 1.ttt e e et e e e et e e e e e be e e e e eabeee e e abaeeeesabaeeaesnseeesesnsteeeennsenas 37

(@] 30T oYY aT=T | £ 38
INSTAlIATION INSTFUCTIONS ...ttt ettt st ettt e b e see e saeesanesaneeneeneenes 52

1.7 TN I 1 = o] F= ol TSR 53

(CT=Y Y= = I D 1T o T 1 4[] o ISR 53

(6] g T o To Y aT=T 0 K- PPPTPPPPPPPPRS 55
INSTAIIAtION INSTFUCTIONS ...ttt ettt sttt e bt et e s b e st e st e st e e b e e nneens 57

1.8 Trust & Reputation ManagemeENTt......ccoui ittt e e et e e e s s s s ereeeee e e e s seannnee 59
GENEIAl DESCIIPLION 1. eetiii ittt e e et e e e e et e e e e beeeessabaeeeeeabaeeeesnsaeeeesabaeeeeansteeeennrenas 59

(6] g T o To Y aT=T 0 K- PPPPTPPPPPPPPRS 60

FAN o] o] [Tor=YuToT o =AY L BT =TT o 4 SRR 66
1.9 Crypto Companion Database (CCDB)ccccccuieeiiiieeieeeiieesieeeiteesteeestaeesreesbaeesabeeessaeesssesenseeesnseean 66
GENEIAl DESCIIPLION ...ttt e e et e e e et e e e s et e e e e e e beeeeseabeeeeessbaeeeeanbaeeeeansaneeeanseneeennsenas 66

(6] 0T o Yo Y aT=T 0 | £ PPN 67
INSTAllAtioN INSTIUCTIONS «..eeiiiiiiie ettt et sttt e st s e sbe e s bt e e sabe e e sabeesabeesaneeesabaeenns 78

1.10 Demonstration 2 — Security-analysis-t00lcoccuiiiiiiciiie e 81
GENEIAl DESCIIPLION ...ttt et e et e e e et e e e e e be e e e eeabaeeeeeabaeeeesabaeeeeanbeeeeeansaneeeanseeeeennrenas 81

(6] g aT o To Y aT=T 0 | KR PP PPPPPPTPPPPPPPPIRS 82
INSTAIIAtION INSTIUCTIONS ...ttt ettt sttt e et e e sbe e saeesaresabeebeenbeens 87
Yo B o T g o IR <ol U 1 YRR 89
I Y=ol ¥ [1 AV Y, = T o - == RS 89
GENEIAl DESCIIPLION c.ettiie ettt e e st e e s et e e e e e ba e e e seabeeeeesabeeeeessbeeeeesseeeesansaeeeennsenns 89

(6] 3T o Yo Y aT=T | =3P 90
INSTAIIAtION INSTFUCTIONS ...ttt ettt b e st st e et e e be e be e saeesate st e sabeebeenbeens 91

1.12 End-to-end Encryption Middleware for SOXFIre.......cuiuiiiiiiiiiiiiccieee ettt e e s saeee e 96
General Description Of the PrOTOTYPE ...ccccviii ittt e e e bee e e e bee e e e eareeas 96

(@] 3T o Yo Y aT=T | 3PN 96
INSTAlIATION INSTFUCTIONS ...ttt ettt s st e b e sae e san e sanesreeneeneenes 97

1.13 sensiNact - Secured [0T MiddIEWAIecccc.uiiiiiiiie e 99
LCT=T 1T =Y I D 1Yol oY o o TP 99

(60e] g T o To Y aT=T o | K-S PPPP PP PPPPPPPPPPTPPPPPRE 100
INSTAllAtioN INSTIUCTIONS ...eeieiieie ettt sttt e e s e e ne e e smreesnenesareeas 102
(60e] 4ol [V o 7o HE TSRO P PP OPPRPROPRRT 106

List

Table 1:
Table 2:
Table 3.
Table 4:
Table 5:
Table 6:
Table 7:

Table 8:

List

of Tables

Environmental monitoring devices data framecooiiiii i 15
Crowd coOUNTEr data frameooei ittt st st s s 18
Connection layout between the MCU board and the TPM daughter-board...........ccccoccveeeeciiinennnen. 29
Overview of M-5eC TOKEN'S fFUNCLIONScooviiiiiiieiiii ettt sree e 44
Detailed presentation of functions and events of M-Sec TOKENccccciviiicciieiecciiee e 44
Sensors SMart CoNtract detailS.......o.ee i iirieiiee e ee s 46
Demonstrators and its correlation with Use Case PilotS.........ccocvevienieninicnicececececee e 106
Demonstrators and its correlation with Use Case PilotS........ccoeoeiiienieniiniicniceeeeeeeee e 107

of Figures

[T U I R O AV =1 | I\ Y =Yoll oY o To] Lo =Y SRR 11
Figure 2: NB-loT modules BC95 (left) and BCHS (FghL)cccviieiiiieiieeee ettt e 14
Figure 3: Environmental monitoring device CIrCUILIYciicuiiii ittt 16
Figure 4: Environmental monitoring deViCe apPearanCeccccueeeeeiieee ettt et eeree e et e e e e re e e e eebae e e e eareeas 16
Figure 5: Crowd COUNTEr dEVICES CIFCUILIY ..uuviiiiiiieeieiieie e eciiee e et e esree e st e e e ste e e e s abe e e e eabee e e enbeeeeenseeessnnsenas 17
Figure 6: People counter [0T deviCe apPEaranCeccuuiiiecuiieeeiiieeeeeiteeeestee e esree e e sree e e e abeeeessabeeesennseeesssnsenas 18
Figure 7: Development board for the STSAFE-TPMcooo ittt e e tee e e e e e e e e eabe e e e eenrae e e e eareeas 19
Figure 8: Measured D00t PrOCESS......c.uiii ittt ettt e et e e et e e e e st be e e e ssbaee s s sbaeeesnseeeesnnseeeesnnseens 20
Figure 9: Raspberry Pl with the STPM4Raspi extension in WhHiteccooiciiiiiiiiei e 21
Figure 10: External wiring for microprocessor developmentscccveieeiciiieiciiie e e 21
Figure 11: Secured Mobile SeNsINg Platformcooiiiiii i 24
FIBUre 12: 10T GAtEWAY DEBVICE ...cciiiiiiiiiiiiiiiiieiiieieeseeeeeeseeaeeeseseseseeeseeseseseeeseeseeeeseeeees 25
Figure 13. Scheme for the hardware-encryption demoNStrator........cccceeeiciiiiiciiiee e e 28
Figure 14. Location of the reset button on the Nucleo-LA476RG board..........cccccuveeeeicieeeeciiee e, 29
Figure 15. ViSUQlIZAtION PrOCESSciiicuiiiiiiieieeeiiiee e et e e ettt e e e rtre e e et e e e s sate e e e s aabaeeesnabaeeeennbaeeeesseeesasseeessnnsenas 31
Figure 16. Client Dashboard - AlErts OVEIVIEWc.ccecciiviiieieeer st e et et s s e e e sae stesbestesrs et et aesaessansan 33
Figure 17. Client Dashboard - EVENTS OVEIVIEWcccceceeeeeieeietietie et et cte st ste e es st st et e e stestestesee e e sessesassansans 33

Figure 18:
Figure 19:
Figure 20:
Figure 21.
Figure 22.
Figure 23:
Figure 24:
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

GANONYMIZEN TEST RESUIES «..eviiiiiciieee ettt e et e e e et e e e e e bt e e e e sbteeeseabteeeesntaeeeeanes 34
GANONYMIZEE ArCHITECTUIE ... st e e s st e e s s bee e e e sbteeesssntaeeesanes 35
Representation of the architecture of our prototype based on Hyperledgercccoceveeevveeeennnenn. 38
Hyperledger Explorer giving details about the underlying permissioned blockchain...................... 38
Ganache Explorer allows us to examine all blocks, transactions, addresses and their balances 39
Details about blocks, transactions, addresses and smart CONtractscccceeevevevieiiiiiiiiiinieenennnnn, 40
The Trust CONEINMUUM ...ttt ettt e sb e bt st sttt e b e e s beesmeeemeeeneeeneean 41
Alastria in the Trust CONTINUUM c...ei ittt sttt e st e b e sbeeenteesabeeenns 42
ltem Manager SMart CONTracCl......ccooviiiiiii i, 45
SENSOrS SMArt CONTIACTciiiiiiii e 46
Overview of the KYC process for the M-Sec Platform.......cccuvveveciiiiiiciii e 49
Overview of the M-Sec loT Marketplace and its COMPONENTSccceeciiieieciiieecciiee e 53

Node-Red Flow for the simulation of 10T sensor dataccooovvvviiiiiii 55

Figure 31. Graphical User Interface enabling searching of sensors in the smart contracts running on

o] ToTol (el - 1o FO OO UROS PRSPPI 56
Figure 32. Graphical User Interface of the returned results after the query to the smart contract................. 57
Figure 33. Graphical User Interface of the EXPIOrer.......uo ittt 57
Figure 34: General steps followed in T&R MOEIS.oooeiiiiieiiiec e e e e e 60
Figure 35: Calculation of the Trust INdex of @n aCtOr.......ccuviiiiiiiii e 63
Figure 36: TRIMISIM-WSN. .ottt sttt ettt s e et esb e sheesanesanesaneereenneenes 64
Figure 37: Normal NetWork COMPAriSON.......ccciciuiieeeiiieeeeciieeeeciteeeeeireeeeetteeeeeateeeeeareeeeesbeeeeenreseeenseseesansenas 65
Figure 38: Access to distributed data.cccueeiiiiiiiiiciie e e e ae e s eareeas 66
Figure 39. Crypto Companion Database Module COMPONENLS.ccecuiiiiiiiiiie it 67
Figure 40. Sequence diagram. Enrolment in Crypto ModUle.oeeviiiiiiciiiiieee et e 68
Figure 41. Sequence diagram. Data encryption in Crypto ModUle.ccccvviiiiiiiee i 69
Figure 42. Sequence diagram. Data decryption in Crypto ModUle.coccviiiiiiiiie i e 70
Figure 43. Sequence diagram. Disenrolment in Crypto Module.cooooiiiiiiiii e 71
Figure 44. Authentication APl in Crypto Companion Database Module.........ccccccveeiiiieiicciiee e, 72
Figure 45. Sequence diagram. Enrolment in CCDB MOUIE...........cooiiieiniincece e es e e s 73
Figure 46. Sequence diagram. Disenrollment in CCDB MOAUIEccecvecieeeceeeice ettt r e 73
Figure 47. Sequence diagram. Read data in CCDB MoOdUIE.eeiiiiieiiiiiiie ettt 74
Figure 48. Sequence Diagram. Save data in CCDB MOdUIE.oeeiiiiiiiiiiieee et 75

6

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54,
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.

Figure 63.

Sequence Diagram. Delete data in CCDB MOdUIE.cccvvieeiiiieiecciee et e 76

Sequence diagram. Authorize in CCDB MOUIE.ueiiiiiiiiiiiiiie et e e s saree e 76
Sequence diagram. Deauthorise in CCDB MOdUIE.oeeieiiiieiciiie e ree e 77
Sequence diagram. Request authorization in CCDB Module.cc.ueeeeciiieeeiiieeeciieee e 77
Authentication APl in Crypto Companion Database Module.........ccccceveiieiiriiieeiiiieec e 79
Management APl in Crypto Companion Database Module.c..ccooeciieiiiiiiiiicciee e 80
Screenshot of the Security analysis tOOl.........cuiiiieiiii e e 81
Conceptual model of software security Knowledge.cccoocuvviiiiiiiiiiccie e 83
Visualized software security KNOWIEAZE DASE.cccuviiiiiiiie e 83
Top page of Software Security Knowledge Base SyStEMccccuieeeeiiiieeciieee et e 84
B =T L Y o TSI Yol £ o PSPPI 84
Threat Type registration FOrM ... e et e e bee e e e arae e e e areeas 85
Registered ldentify Spoofing in Attack Pattern knowledgecccoocveeiiiiii e, 85
Spoofing information in Threat TYPe SCrEEN......coic i e e e s saree e 86
Edit fOrm in THrEat TYPE SCIEEN ...eeii ittt et e et e e e e et e e e e e bte e e e sabae e e eeabteeeesabeeeeenasenas 86

Figure 64. Association of Treat Type knowledge “Spoofing” and Attack pattern knowledge “ldentity

Spoofing”
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.

... 87
Stack for the M-Sec "Security Manager" with components described in bluecccccvveeennnen.n. 89
The first level of the directory service for the security manager......cccccceecveeeicciee e, 90
USErs ManagemeENT PABE...cciiiiiiiiiiiiiiiiiiiieieieieteteeeteteeetetetetereteteteteteteteteteaeteeeeeteetereeeeeeeereeresereeereearene 92
L6 R1=T o L1 4o o PP R ORI PSOPROP 92
web user page for requesting a New Certificate........cccvvuiiiiiiiiii e 94
Prompt to insert the CSR while requesting a new certificateccccoevveeiivciei e, 94
Publisher/Subscriber pattern with potential MITM in yellow and counter-measure in red 96
SOXFITE SETUP SCIEEBN ..eeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeee e e esee s e se e e e s e e sessesseesasasssassssssssnsssssnsssssssssssesesnsnensesasneenes 98
SOXFire database CoONfigUIratioNcoiviiii i e e saaee e 98
SENSINACE SEIVICE MOeeiiiiieeie e e s s b e e meeesaree e 99
sensiNact service model Mapping eXamMPIEocovieiieieie s et 99
sensiNact gateway northbound and southbound connectivitycccoeevveiiiiiee e, 100
Yol ¢ =To I elo] o o 1= £ 171 4V PSSR 101
SIEN thE X DIIAZE ottt st e e a b e s e e et ese s be st st e e s enbesaes et ennans 101
AULhOFIZation COE FIOWooviiiiiiiiee et st s 102

Figure 80. Resource owner password credential floWcooooiiiiiciii e e

Figure 81. Login as adminTester

Figure 82. LOGIN @S aNONYMOUSTESTEN ..ciiiiiiiiiiiiiieiiiciieceeeeeeeeeeeeeeee eeseeeeeeeeeeeeeeeseseeeeeeesseseeseesenes

Glossary

AAA Authorization, Authentication and Accounting
AES Advanced Encryption Standard

API Application Programming Interface

ARM Advanced RISC Machines

ATF ARM Trusted Firmware

CA Certification Authority

CCDB Crypto Companion Database

CoAP Constrained Application Protocol

CPU Central Processing Unit

CSR Certificate Signing Request

CVE Common Vulnerabilities and Exposures
DB Database

DNS Domain Name System

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm
ECH Elliptic Curve Diffie-Hellman

EVM Extended Verification Module

GAN Generative Adversarial Networks

GDPR General Data Protection Regulation

GLCIC Globally and Locally Consistent Image Completion
GPIO General Purpose Input/Output

HAL Hardware Abstraction Layer

HMAC Hash-based Message Authentication Code
HSM Hardware Security Module

HW HardWare

12C Inter-Integrated Circuit

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IMA Integrity Measure Architecture

loT Internet of Things

ISO International Organization for Standardization

JSON Javascript Object Notation
LAN Local Area Network
LDAP Lightweight Directory Access Protocol

M(number) Month (number of the month in the project)

MCU Micro Controller Unit

MD5 Message-Digest Algorithm 5

MPU Micro Processor Unit

MQTT Message Queuing Telemetry Transport

NB-loT Narrow Band-loT

NIST National Institute of Standards and Technology
oP Operating System

OPTEE Open Portable Trusted Execution Environment
0SS Open Source Software

PCR Platform Configuration Register

PKI Public Key Infrastructure

PPP Point-to-Point Protocol

REST Representational state transfer

RMF Risk Management Framework

RPC Remote procedure call

RSA Encryption algorithm named after its inventors: Rivest, Shamir and Adleman
SASL Simple Authentication and Security Layer

SPI Serial Peripheral Interface

SSH Secure Shell

SSL Secure Sockets Layer

SW SoftWare

TCG Trusted Computing Group

TEE Trusted Execution Environment

TLS Transport Layer Security

TPM Trusted Platform Module

uc Use Case

WAN Wide Area Network

WP Work Package

Introduction

The main focus of this document is to introduce the M-Sec loT security framework, which in turn will help to
develop reliable and secure applications for the Smart City context. The goal here consists in looking for
techniques, methods, and design and operating principles that minimize the risk of suffering critical
vulnerabilities in a wide range of loT devices, which could be leveraged by hackers to carry out a number of
nefarious activities.

The overall M-Sec architecture is introduced and discussed in the M-Sec Whitepaper!. This document
provides a good list of the M-Sec components with their definition and ulterior implementation. In concrete,
the following sections of this document are organized as follows, each of which focusing on a task shown in
Figure 1: loT security, cloud and data level security, P2P level security and blockchain, application-level
security, and overall end-to-end security.

Task 4.1 Task 4.2 Task 4.3 Task 4.4
loT security Cloud and data level P2P level security and Application-level security

security hiockeha T
uclL Outdoor devices NB-loT w
for env monitoring Backend Encrypted

Pilot 1-1 mobileapp

Pilot 1-1 web app

I database
pilot 1-2
uc2 Home loT devices T ilo app
and Gateway = Pilot 2-1 app
8 Encrypted w
x EIEETD) Pilot 2-2 2pp
uc3 Mobile Sensors g m
environment m i 7 - Pilot 3-1 app
() | Gateway e Distributed g
s S : ==
amera = Encrypted
uca (Quorum} database u

Pilot 4-2 app

Smartphone XMPP over HTTPS

ucs Smartphone XMPP over HTTPS
uce XMPP over HTTPS

Task 4.5 — Overall end-to-end security

Pilot 5-1 app
Encrypted

database Pilot 5-2 app

=
(=]
=
=
o
%)
>
o

pueqyinos

Pilot 6-1 app
Encrypted

database Pilot 6-2 app

Auditing Authorization
i ? Accountin,
Security Manager :

Figure 1: Overall M-Sec topology

First, the document addresses the main objectives of the M-Sec components strengthening the loT layer,
which will become one of the security layers in the overall Multi-layer Security (M-Sec) platform, providing
the needed security and reliability for loT devices as follows:

L https://www.msecproject.eu/wp-content/uploads/2020/10/M-Sec WhitePaper v5 CLEAN.pdf

11

https://www.msecproject.eu/wp-content/uploads/2020/10/M-Sec_WhitePaper_v5_CLEAN.pdf

- loT devices with increased security, an asset that further strengthens the current state of the art
Security provision in loT devices on a hardware level.

- Intrusion Detection System (IDS), an asset that monitors communication between loT devices and
cloud in order to detect, prevent, and report any suspicious activity that may be a sign of an attack.

Then, the report presents the M-Sec cloud and data-level security. Three demonstrators are described:

- Hardware-based security, an asset which extends loT device by bringing strong and complex
encryption scheme as well as authentication capabilities to enforce the mutual verification of the
connection between the device and the cloud

- Software-based “Visualization Tool for Security”, an asset that utilizes the security data from loT
based Intrusion Detection System (IDS) for security monitoring purposes.

- GANonymizer which processes video streams in order to remove sensitive/private data such as
people walking on streets and also cars.

Afterwards the document presents three different demonstrators as well as the corresponding services and
gives installation details. The main focus of the presented demonstrators and tools is to implement the M-
Sec blockchain framework to facilitate the convergence of loT security with blockchains in order to support
an innovative smart city platform.

Later, the report consists of two different demonstrators as the main outcome of Task 4.4: Application level
security. The two demonstrators provided in this deliverable contribute to the multi-layered security in
different parts.

With the Crypto Companion Database we provide security for sensitive data that cannot be stored on
Blockchain. The two main goals of this demonstrator are to encrypt and save the data and to secure it. In
order to fulfil these requirements a secured API is provided. This APl is also connected to a developed
module called Crypto Module that allows the encryption and decryption of data per user.

With the Security analysis tool we provide security requirements that only the use case diagram cannot
elicit. The main goal of this demonstrator is to create a misuse case diagram that enables the association of
security knowledge and elicit threats and security requirements of the use case.

Finally, the document presents the reference design demonstrating M-Sec end-to-end security. End-to-end
Security has a particular approach in M-Sec Project as it is a combination of the output from the 4 other
tasks of the project, completed by a Security manager ensuring a secured and smooth interoperation of each
element of the architecture. The functions provided by this security manager can be used directly by the
assets of each task or can be interfaced using the two main middleware of the project.

12

loT Security

The Internet of Things (loT) has changed the way people interact with technology, and loT security is a
growing concern that is reaching a boiling point as of today.

People’s connected devices are data collectors. The personal information collected and stored with these
devices — such as user name, age, e-mail addresses, health data, location, and more — can aid criminals in
stealing their identities.

At the same time, loT is a growing trend, with a stream of new products hitting the market. But here is the
problem: When you’re connected to everything, there are more ways to access your information. That can
make you an attractive target for people who want to make a profit from your personal data.

Every connected device you own can add another privacy concern, especially since most of them connect to
your smartphone. But the more functionalities you add to your smartphone, the more information you store
in the device. This could make smartphones and anything connected to them vulnerable to a multitude of
different types of attacks.

In the particular scenario addressed by this deliverable, the authors will focus on the security incorporated
to the loT devices themselves, being Task 4.4, the one dealing with the techniques to apply in the application
side of the equation in order to increase the security.

The prototype about to be described in this subsection will be in charge of deploying a series of novel loT
devices in selected locations in the city to both retrieve interesting environmental data along with a
measurement of noise level while on the other hand will also be capable of sketching crowd heat maps,
using as a source of information the number of mobile phones in the area.

These loT devices will achieve its goals of implementing security measures through the integration of
hardware components.

In this demonstrator, we present a technique to increase the security level of a physical object via an
extension conforming to the "TPM" (Trusted Platform Module) profile standardized by the TCG (Trusted
Computing Group), similar to a trust anchor. The security in question primarily relates to the integrity of the
product to ensure that the product has not been compromised to extract sensitive information such as
private keys or other authentication information with nuisance capability. These integrity checks can be
done at different levels depending on the type of targeted platform: boot loader, Operating System (OS),
and applications.

13

Components

Environmental monitoring devices (EnMon)

The environmental monitoring devices architecture is based in the HAL of the microprocessor STM32L4 and
the programming environment is called System Workbench for STM32, based on Eclipse.

(=3

B L]
[e

sgeee
-

0 (028:6698

The devices use Narrow Band-loT (NB-loT) modules
FAE g A produced by Quectel for these narrowband
— y — N
@ggﬁ‘g‘ﬂg‘ﬁg_ﬁ"ge o experiences, specifically, BC95 and BC68, which are
shown in Figure 2.

Figure 2: NB-loT modules BC95 (left) and BC68 (right)

As of today, these loT devices send environmental data related to temperature, humidity and noise and do
so following the frame introduced in Table 1. The next steps in the prototype evolution will incorporate CO,
and VOC sensors to help establishing comparisons among different areas of the location to deploy them,
analyse the emissions levels and therefore derive strategies that may impact positively the city and its
inhabitants.

14

Table 1: Environmental monitoring devices data frame

FIELD NAME LIIE:II\:ECIS-$H VALUE TENTH VALUE UNITS
TYPE 1B 01 1 -
LENGTH 2B 001c 28 -
N_SEND 4B 00000000 0 -
IMEI 16B 38363737323330333030343033333000 867723030040330 -
BATTERY_VOLTAGE 2B 0ddo 3536 mV
SONOMETER 2B 0040 64 dB
TEMPERATURE 2B 007c 124 °Cx 10
HUMIDITY 2B 0235 565 % x 10
An example related to how this kind of looks in real life trials is as follows:

01001c00000000383637373233303330303430333330000dd00040007c0235

At first sight, and knowing the characteristics of our developments, the way to interact with other
components could consist in packing those developments (such as Wolf Secure Sockets Layer (SSL) library) in
a library that could be integrated in EnMon’s own architecture for the L4, created with HAL (Hardware
Abstraction Layer) libraries following ST guidelines.

The initial prototypes for these environmental devices, relying on a STM32-L4 microprocessor went through
an interaction with the TPM from the ST Microelectronics portfolio. Nevertheless, after thorough testing, the
final prototypes rely on STM32-L422cbu6 Series microprocessor with data encryption capabilities.

15

Figure 3: Environmental monitoring device circuitry

The current shape of this loT device is the one featured in Figure 3 and in Figure 4. This prototype is encased
in a proper IP casing to deploy it outdoors and substitutes the slot to plug into the power socket initially
considered for a set of batteries to make it autonomous, as depicted in the pictures.

Figure 4: Environmental monitoring device appearance

16

Crowd counter devices (Crow)

On the other hand, the crowd counter IoT device works with a Raspberry Pi, relying on buildroot?; it should
be compatible with Debian when the time of compiling comes.

Right now, Ethernet is only used during the device boot. Afterward, when the device is working, it employs
Point-to-Point Protocol (PPP) and a communication module. Nevertheless, if we suppress that
communication module, we could retort to Ethernet to proceed with the sending of data.

These crowd counting initial prototypes integrate Raspberry Pi & TPM to act securely during the
initialization process and provide a measured boot. Final prototypes are also implementing advanced
encryption mechanisms to prevent undesired external accesses that may affect the device functioning and
thus the data it delivers. Both pictures in Figure 5 help to catch a glimpse of how these devices are built.

“er i
[Z'/.-g! FATERERER neREERRRARER
e —

Figure 5: Crowd counter devices circuitry

2 Buildroot,
17

https://buildroot.org/

Referring to data, the information sent by this loT device follows the structure depicted in Table 2, where it
is easy to appreciate the different parts of every frame, and a real life example is also offered.

Table 2: Crowd counter data frame

SN@WIFI@SDATE@STEMPERATURE@SNUM_WIFI_PKTS@$NUM_WIFI_DEVICE MAC@RSSI

000000006956C35F@WIFI@20192208-22:41:55@65.53@12076@5 CC:4B:73:64:59:66@-41

B8:27:EB:71:FF:F5@-57

8C:F7:10:07:AE:C2@-71

00:16:9D:F5:0B:80@-85

44:07:0B:E9:4D:30@-35

As of today, the current design of this device presents the appearance depicted in Figure 6, including a slot
to plug the battery charger. Nevertheless, the final goal implies preparing an autonomous version, which
allows the Municipality services to treat it as a portable device and move it among different locations within
the city.

Figure 6: People counter loT device appearance

18

A TPM is the root component of this demonstration. It
provides security primitives such as encryption
algorithms, key storage, true random number generator,
hash functions, etc. that runs in a secure way compared
to traditional implementation.

There are many implementations of TPMs. The most
classical one is a hardware component, which has the
highest protection profile for hardware attacks (injection

faults, side-channel attacks, etc.). Thus, other
implementations have been deployed, such as the fTPM,

which are firmware-based implementation.
Figure 7: Development board for the STSAFE-TPM

These have been made popular by a manufacturer such

as Intel. Finally, some software implementation also exists, whether they are simulators or applications
targeted for Trusted Execution Environments. For this demonstration, we used the development board
“STPMA4Raspi” as shown in Figure 7.

We have developed a measured boot for both hardware targets, based on STM32L4 and the BCM2837
included in the Raspberry Pi. One of the difficulties is that those targets do not support natively secure boot
as the boot loader is static or private. Instead of a secure boot, where each loader is verifying the N+1 loader
prior to pass control to it, we have implemented a measured boot.

The goal of the measured boot is to ensure the integrity of the platform, making sure that it corresponds to
what is expected. It prevents some attacks such as firmware tempering in which, for example, an attacker
could perform eavesdropping on the OS kernel operation in order to gain knowledge about cryptographic
operations.

This implementation relies on the TPM functions and, in particular, the PCR (Platform Configuration
Registers), which are specific memory locations within the device. There at typically 24 PCR on a physical
TPM2 device. These registers contain hashes, SHA-1 hashes on the first version, and SHA256 hashes on the
second version. We do not write a data into a PCR, but we extend it with a new value. The value of a PCR
depends on the previous value and the new one regarding the following function:

PCR new value = Digest of (PCR old value || data to extend)

It keeps a state of the system and its modifications during runtime. PCR can be used as an authentication
policy to seal and unseal data in the non-volatile memory of the TPM and can also be used for attestation
regarding the platform state.

Our usage of this function is to measure the system integrity and prevent to execute an application or
release data if the system is not at a trusted state. Our approach is described in Figure 8. We have modified

19

the Raspberry Pi boot chain in order to add measurements at boot. During the boot stage, all data is
encrypted on an SD Card, and the key is stored into the TPM bound to a policy based on PCRs states.

Hardware
RPT's ATF - (O1) initramfs C ok
firmware firmware U-boot Application
STSAFE-TPM
Root of trust in integrity executes
reporting measures

Figure 8: Measured boot process

If the measurements stored in the PCRs are equal to the trusted state, the decryption key can be unsealed
by the kernel in order to mount the operating system. Otherwise, the decryption will not happen, and the
operator will be asked to fill in manually the decryption key.

In complement to the measured boot, we have enabled some auditing features regarding the operating
system’s state, still using the secure element capabilities. Those auditing features rely on the IMA and EVM
modules, namely Integrity Measure Architecture and Extended Verification Module.

This feature prevents any modification at runtime, in particular privilege escalation that can be gained from
a remote attack. Many attacks on the Linux kernel occur and are subject to Common Vulnerabilities and
Exposures (CVE)? publications. These can be prevented and detected using such features.

At this stage, this component only reports suspicious activities, such as dynamic module loading, within the
logging system (both local and remote using rsyslog). Thus, in a future version, we would like to extend it
with a remote attestation platform in coordination with task T4.5 in order to manage this suspicious activity
such as for example by placing the device into quarantine, preventing data and other connection from the
device to spread to the system until it has been proven safe. This sanity of the device can be done at runtime
using the “quote” capability of the TPM.

3 Common Vulnerabilities and Exposures website,

20

https://cve.mitre.org/

This demonstrator will be part of the two pilots that constitute Use Case 1, to be conducted in Santander
(Spain).

Required Tools and dependencies

Assuming the build machine is debian-based (debian, ubuntu, etc.), the following dependencies shall be
installed:

apt-get install crossbuild-essential-arm64 fakeroot git kernel-wedge quilt ccache flex bison
libssl-dev rsync libncurses-dev bc patchutils dh-python dh-exec libelf-dev device-tree-compiler

TPM physical connection

In production, the TPM would be directly soldered and routed on
the board, but in our case, the devices to secure are legacy, or we
are in a prototyping phase. The pinout of the board we have been
using is designed for the Raspberry Pl GPIO (General Purpose
Input/Output) port. It can be plugged directly on top of the
Rasbperry, as shown in Figure 9.

Figure 9: Raspberry Pl with the STPM4Raspi
extension in White

For other devices, we can use either SPI (Serial Peripheral
Interface) bus or 12C (Inter-Integrated Circuit) bus to connect
the TPM to the micro-controller or processor. We have done
a temporary wiring in order to conduct trials using an
STM32L4 (Nucleo L476RG development board), as shown in
Figure 10.

Figure 10: External wiring for microprocessor
developments

21

Bootchain

The bootchain is made of two components: the ARM trusted firmware and the U-Boot bootloader. In some
cases, the Advanced RISC Machines (ARM) Trusted Firmware may be optional, its main functionality is to
enable the TrustZone®, which is the ARM ‘s implementation of a Trusted Execution Environment (TEE).

U-Boot has been patched in order to support the physical TPM. Patches consist in:
1) declaring the TPM component on the SPI bus in the device tree
2) adding SPI support for the BCM2738 chipset.

A predefined configuration enabling the TPM commands, libraries, and associated security dependencies
have been added. Optionally, the TrustZone® features can be enabled using the OPTEE OS in the secure
world.

If Open Portable Trusted Execution Environment (OPTEE) is to be added, we can use this other specific
command to do so.

Linux Kernel

In order to be fully available to application and to ensure the OS integrity, the Linux Kernel has to be
recompiled with specific additional features such as:

- Declaring the TPM device within the device tree

- Enabling TPM2 driver (as a character device)

- Enabling the Integrity measurements and extended verification module (IMA and EVM)
- If needed, enabling the OPTEE driver for trusted applications

Linux Security

In order to monitor the execution of Linux and its application, we use the IMA/EVM module that we need to
configure for our demonstration. The modules have been activated within the kernel configuration in the
previous step, and then, we need to configure them with a list of files to monitor. We propose a script to
deploy the parameters to be run after the installation of the tools.

apt-get install autoconf libtool libssl-dev libattrl-dev libkeyutils-dev asciidoc ima-
evm-utils
/opt/ima/deploy.sh

The policy regarding this module can be edited in /etc/ima/ima_policy while the measurements can be
monitored in the /sys/kernel/security/ima/ascii_runtime_measurements file.

Download and Run Demonstrator
The following files compose the demonstrator:

- arm-trusted-firmware.tar.bz2 which contains the ARM’s Trusted Firmware, which acts as a
hypervisor between the Linux OS and the TrustZone during runtime.

- u-boot.tar.bz2 which contains the Linux boot loader with a patch to support the SPI bus and the
proper configuration in order to enable the TPM2 (device tree) and the measurements (boot script)

22

®

- optee.tar.bz2 (optional) which contains the OP-TEE system for the TrustZone® tailored for the
Raspberry PI.

- linux-4.19.12.tar.bz2 which is a patched version for the debian kernel for the Raspberry Pl with
TPM2, IMA/EVM, and OP-TEE driver. The device tree matched the TPM2 development board we
have been using.

- rpi-sdcrypt.tar.bz2 which is a set of files to be deployed on the operating system in order to manage
the encryption of the partition and decryption using the TPM2 NVRAM based on a PCR policy. IT
handles the provisioning phase as well as the initramfs generation for the decryption.

At the time of edition of this deliverable, the development files have not been published, and this
publication is under review at CEA.

Licensing

Even if most of the developments have been made using open source code, the status of the development
includes certain blocks of proprietary code (non-free). Nevertheless, the future steps will, for sure, imply
developing open source code that could be made available.

Currently, some review process is being conducted in order to push some patches into mainstream
repositories.

23

1.2 Intrusion Detection System (IDS) for loT devices

General Description of the Prototype

As proof of concept for a software-based security solution, we have selected Use Case 3, which defines a
common scenario that can be expected in a hyper-connected smart city, where information from sensors or
loT devices needs to be delivered without compromising the triads of information security, i.e.,,
confidentiality, integrity, and availability. Since deliverable D4.5 will be addressing the threats and security
elements for a hyper-connected smart city, and D4.3 will be addressing the cloud layer. Therefore, in this
document, as stated previously, we will focus on the security components required for securing the loT
devices layer.

As it can be seen from Figure 11 below, the Mobile Sensing Platform being used in Use Case 3 is directly
connecting to the internet without any security features. We need to secure it for delivering a reliable sensor
data via the internet. Using research from loT honeypot, we can secure this platform by using an intrusion
detection system with customized signatures for preventing cyber-attacks in order to secure this mobile
sensing platform.

« Temperature \

» Humidity

Intrusion
Detection
System
(IDS)

st

/

- IP CAMERA
+ GANonymizer

Internet

loT
Gateway
Device

AN

- Air Quality

- Etc. /

Mobile Sensing Platform

Figure 11: Secured Mobile Sensing Platform

Components

Internet connectivity exposes loT devices to potential threats from bad actors (cybercriminals) with
malicious intent. As a firewall is too heavy for loT devices resources, therefore, we have adopted lightweight
Intrusion Detection System (IDS) for providing security to the loT devices layer along with OS hardening. OS
hardening will help in reducing attack surface by closing all the ports that are not needed. This way, we can
monitor threats as well as prevent known attacks without consuming too many resources of the loT devices.

24

Honeypot (loTPOT)

We first need to understand what weaknesses loT devices may have that can be exploited and then mitigate
them with appropriate security solutions. A honeypot can be one such analysis tool that can be used during
the development and testing phase. Symantec defines a honeypot as a computer system that can be used to
attract attacks and analyse how bad actors conduct such attacks. It can also be used to check the
vulnerabilities in a device or system and strengthen security to mitigate vulnerabilities.

IoTPOT honeypot is an independent computer system that attracts attackers and helps with analysis of their
attack techniques or patterns by exposing itself as an ordinary device connected directly to the internet.
Unique patterns are obtained from such analysis that can be used for creating signature patterns for
Intrusion Detection Systems (IDS) during the development stage. Furthermore, honeypot can be used in the
testing phase for finding out vulnerabilities in internet connecting devices for security improvements.

loT Gateway

loT gateway has the embedded communication hardware in
the loT devices that has a communication module to connect
to the internet, either via Local Area Network (LAN) / Wide
Area Network (WAN), Wi-Fi, Bluetooth, or 3G/4G/LTE
interfaces. Figure 12 offers a depiction of this device.

Figure 12: loT Gateway Device

Intrusion Detection System (IDS)

IDS is the software module that is installed in the loT device for monitoring and reporting purposes, along
with the option for blocking malicious traffic matching known signatures. For more reliable signatures, we
have also used honeypot (IoTPOT) for testing various loT devices, analysed and extracted cyber-attack
patterns or signatures. We will be using a network-based IDS. Therefore, this module can examine the
network traffic, flag a packet if a known attack pattern match is detected, log the event for more analysis
and then block/drop it based on configured rules to protect loT devices from a potential attack.

25

For the sake of easiness, we have compiled the customized OS hardening commands and the IDS software
together as a package for easy installation on various loT gateway devices.

Required Tools and dependencies

The demonstrator has been designed for securing mobile sensing platform having the following
specifications:

e Intel Atom Processor 500 MHz Dual Core, 1GB RAM, 4GB Flash, Debian GNU/Linux.

Download and Run Demonstrator

The installation file is named as “installer.sh” that can be downloaded securely over 3G or internet
connection with the following command:

$ scp -P 64295 -i <key> rainforest@xxx.xxX.XxX.xxx:~/iot-k/installer.sh .

After downloading, check and confirm the integrity of the downloaded file using Message-Digest Algorithm 5
(MD5) hash, as follows:

$ md5sum installer.sh
MD5: 5cb38fb1754267c7d699565100e3262c

1) The “installer.sh” file should be downloaded into the “/root” directory and the directory should
look something like this:

2) Launch installer shell as follows:

3) Wait for it to complete updates, download, and install the program. It will finish installation and
return the prompt as follows:

4) Now check root directory contents and you should see as follows:

Demonstrator runs in the backgroud, sending log events to the visualization tool in the cloud. On
loT gateway devices, IDS program will be initiated at startup with the following command:

root@iot:~# ./start_ips.sh

Licensing

The software solution developed as IDS for the loT devices is based on Open Source Software (OSS) and,
therefore, does not need any licensing. Whereas 10TPOT is a proprietary asset that is used for study and
analysis purposes only during the research and development phase.

26

Cloud and Data Level Security

Data encryption is an operation that requires a lot of calculation steps. For an loT product, generally
constrained in computing resources and in energy, these operations are delicate because they can cause
latency problems related to too-long computation time, or they can still use too much energy thus damaging
a battery in a premature way. Similarly, encryption software implementations may be subject to
vulnerabilities that can be exploited. A typical example of such vulnerability is the “heartbleed” (CVE 2014-
0160%) software vulnerability which was introduced in OpenSSL and has affected many devices such as
smartphones, core internet routers and hard-drives firmware.

A countermeasure for such vulnerabilities is to use a hardware component, such as an HSM, a crypto-
accelerator or a TPM. With such a device, it is expected to protect not only the private keys of the
encryption, but also the process of encryption/decryption itself so it cannot leak data to unauthorized
software. Our demonstration aims to show this enhancement on constrained devices, where the
employment of secure elements is emerging. It relies on the developments carried out in T4.1 and presented
in deliverable 4.1 where the same secure element is used to provide system integrity.

Hardware target

This demonstration is made for typical loT devices, powered by a micro-controller with energy limitation and
using narrowband communication channel for direct connection to the cloud. Such a device is described in
D4.1. It uses the STM32L4 microcontroller; this MCU plays the role of a connected object. For development
purposes, we have used a NUCLEO-L476RG development boarding embedding such MCU. This device has a
sensor attached to it, a potentiometer, simulating any analogue environmental sensor. It also has a STSAFE-
TPM with an SPI connection to the MCU. These components are described in Figure 13.

27

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://en.wikipedia.org/wiki/Heartbleed

Microcontroller

Sensor

:
1
i
i STM32L4
1
;
i

Send data via SPI Potentiometer

"

EccKey_priv()
SHA256()
Sign_ECC()

HAL_ADC

EccKey_pub()
SHA256() W(_)Iﬂ-PM
Verify_ECC() Library

Figure 13. Scheme for the hardware-encryption demonstrator

Software library

In order to integrate the TPM at the STM32L4 level some steps are necessary. First, we use the wolfTPM
library from wolfSSL to integrate the TPM features. WolfTPM library is a compliant TPM 2.0 stack, designed
for embedded use. It is highly portable, due to having been written in native C, having a single 1/O callback
for SPI hardware interface with no external dependencies, and its compacted code with low resource usage.
This uses the TPM Interface Specification to communicate over SPI and Includes wrappers for Key
Generation, RSA encrypt/decrypt, ECC sign/verify and ECDH and Symmetric AES encrypt/decrypt.

Required Tools and dependencies

We have used the “TrueSTUDIO for STM32>” tool in order to develop and build the demonstrator’s
firmware. Once the firmware is compiled from the source, it can be easily flashed to the device by simply
copying the binary to the USB mass storage device which is mounted by plugging the device using a USB
cable.

In order to run the demonstrator, the operator shall have the device, a USB cable with mini connectors and a
computer with a serial terminal installed such as Putty under Windows or Minicom on Linux systems.

User Manual

The TPM is connected and powered with the STM32L4 via SPI and on the other part the potentiometer is
plugged into via ADC pins. In particular, the TPM shall be wired as described in Table 3

28

https://atollic.com/truestudio/

Table 3. Connection layout between the MCU board and the TPM daughter-board

Function / signal Pin on board Pin on daughter board

SPI1_SCK PAS TPM_pin_23
SPI_MISO PA6 TPM_pin_21
SPI11_MOSI PA7 TPM_pin_19
SPI1_CS PB6 TPM_pin_24
rst_tpm PA9 TPM_pin_18
VCC VCC
GND GND

To start the demonstration, we need to plug the board to a computer having a terminal using a USB-mini
cable. The device will be powered-up directly from the USB port and will execute its firmware. Then, we can
connect to its console using a terminal with the following parameters:

Speed baud = 115200
Data bits =8

Stop bits=1

Parity = None

Flow control = None.

In order to have the initial output of the firmware we need to reset the device using the black push-button
located on the board as illustrated in Figure 14.

Figure 14. Location of the reset button on the Nucleo-L476RG board

At this stage, the device is unprovisioned and the first step is to provision the TPM with keys, keys for the
session management and keys for the application.

First, we generate keys in order to preserve the privacy of the exchange between the TPM and the MCU.
Indeed, as this exchange of information occurs on an SPI bus, an attacker can eavesdrop this communication.
We prepare an authenticated session for the further commands from the CPU to the TPM which will encrypt
most of the parameters in the next steps. To initiate authentication with the TPM, a session can be opened.
When a session is started, the TPM processes the command and generates a session handle, computes a
TPM nonce and calculates a session key. This key is used to generate HMACs, encrypt command parameters
and decrypt response parameters. After the session is created, the session key remains the same for the
lifetime of the session. The session handle and the TPM nonce are returned by the command.

29

The next step is to launch the creation of the primary key derived from the static seed Endorsement Key
(EK). This new primary derivation key is transferred and stored in an NV (Non-volatile) ram in the TPM.
Subsequently, all the keys that will be used for the security primitives will be derived from the primary key.

Then we generate a private key. To make a signature of the data, we use ECC (Elliptic-Curve Cryptography)
asymmetric algorithm as a cryptographic scheme. This scheme begins to be widely used at the IoT level
thanks to its energy performance. It has good efficiency in terms of implementation. Data coming from the
sensor will be encrypted using this private key which will be kept into the memory of the component. This
key is stored at the handle 0x80000004.

Once the provisioning phase is done, the application will loop over the following sequence

1) Read the analog value from the potentiometer
2) Send the analog value to the TPM for encryption
3) Retreive the encrypted value from the TPM

The value retrieved via the ADC is sent via SPI in the TPM, and then a SHA256 value is calculated in the TPM.
Once the hash fingerprint is generated, it is encrypted with the private key. In order to verify the validity of
the previously signed data in the TPM, the public key is sent to the MCU, the signature is returned from the
TPM to the STM32L4 and then decrypted using the public key generated in the TPM. A hash is calculated in
the STM32L4 and compared with the one generated from the signature. If the two hashes are identical, the
signature is validated. As a result, the integrity and authenticity of the data has been proven through the
TPM.

Licensing

WolfSSL, the crypto library with TPM support used in this demonstration is available under two licensing
models, either open-source or commercial. More information is available on the editor website:

30

https://www.wolfssl.com/license/

In order to stay vigilant and monitor threats to the loT devices layer from anywhere in the cloud, an analysis
tool is required that can translate the data into easy-to-understand graphical information. This visualization
tool is a software-based solution that collects and examines activity from loT layer or agents embedded in
loT gateway devices. This tool will not only help with the security health checks by providing insight into how
the security is being maintained at loT gateways, but also helps in further analysis of devices under attack.
Thereby, providing 24/7 security threat monitoring and alerts.

Visualization Tool
The software solution consists of

1) Data Collection Agents
A software solution embedded in the loT Gateways is used to collect logs generated by the IDS at the
loT security layer and forward the security data to the aggregator module.

2) Aggregator Module
Aggregator agent in the cloud organizes the data in real-time for further analysis.

3) Data Analysis Module
Data analysis engine examines all the data by matching with well-known attack patterns and
forwards suspicious activity to the visual graphics module.

4) Visual Graphics Module
Visual graphics module converts the data to easy-to-understand information for further
investigation at the security monitoring station.

Data) Visual
: Aggregator Data Analysis .
Collection Graphics
Module Module
Agents Module

Figure 15. Visualization Process

As shown above in Figure 15 the process is simple. IDS in loT Gateways monitors the public interfaces by
matching traffic with known signatures. These signatures are extracted from various testbeds, including
research and analysis involving the honeypot (loTPOT). Embedded agent (filebeat) in loT gateway uploads
the logs to the aggregator module in the cloud for further analysis. The aggregator module collects all the
data from various IoT gateways and passes it to the data analysis engine, which examines all the data with
the help of the threat detection module. The results are flagged as alarms in the visual graphics module for
further investigation and easy-to-understand security threat monitoring.

31

Required Tools and dependencies
Following are required for this demonstrator:

- Laptop/Desktop with CPU (i3 2.4GHz or above), Memory (16GB or above), Hard disk (512GB or
above), and an internet connection.

User Manual

An installer has been compiled to download and install all the required open source software files along with
customized settings for use case 3 and 4 pilots on the loT gateway device. The software runs in the
background and information is displayed on the monitoring screen.

The installation file is named as “installer.sh” that can be downloaded securely over any internet connection
with the following command:

$ scp -P 64295 -i <key> rainforest@xxx.xxX.XxxX.xxx:~/iot-k/installer.sh .

After downloading, check and confirm the integrity of the downloaded file using MD5 hash, as follows:

$ md5sum installer.sh
MD5: 5cb38fb1754267c7d699565f00e3262¢C

Installation Guide

1) The “installer.sh” file should be downloaded into the “/root” directory.
2) Launch installer shell

3) Wait for it to complete updates, download, and install the program.

4) Confirm that filebeat program is running.

If not running, then start it with the following command:

$ /etc/init.d/filebeat start

Running Demonstrator

PC client can connect with the filebeat server from anywhere using secure pre-set credentials and shall look
something like as shown in Figure 5 and 6. This is a . User
needs to login with the pre-set credentials and watch for security events/alarms and examine security
reports. If further investigation is needed, then a security expert should examine the logs/alerts and take
appropriate actions, ranging from further data analysis to updating threat signature patterns on the IDS.

Licensing

- This tool is based on Filebeat and Kibana open source code, customized according to M-Sec needs
and requirements.

32

A . Dashboard ~ Events Overview ECS o] .

c]

o B 8 F O

S

G d m ®

&

ES

'8 <

e M

B O

e B 8

d 8 &

d

g

-

’ @ obsiot.example.org

2

o

185100 185200 185300 18400 163500 185600 1GEpO0 188800 iS000 190000 190100 190200 190300 190400 190500

°

Event Types Top Network Protocols Top Application Protocols Top b op
RU
YW CN i
SE IR
Top Connection
Top C ion Source Countries
@ slert @®tcp ®icmp @udp @ failed Countries - Count Count /,

Figure 16: Client Dashboard — Alerts Overview

. Dashboard Alert Overview ECS

Full screen Share Clone Edit

v PBearch KoL @ v Last 15 minutes Show dates -

@ +Add finer

Top Aering Hoss oo gt)

) obsiot example org

Alert Signature Alert Category Count

Detect ICMP Packet 0

2 ef{onorpsneicfiock Lstedfsource group 1 s
) Detect S5H Access s
! Detect telnet Access !
s I II III I I Il ET CINS Active Threat Intefligence Poor Reputation IP group 93 1

Otimaslamp por 30 saconds

Alerts - Top Source Countries Alerts - Top Destination Countries
Source Country Count Source Country Count
us 13 » 2
RU 4 Export: Rawd Formatted &
oN 3
sc 2

Figure 17: Client Dashboard — Events Overview

33

1.5 Privacy Management Tool

Use cases for handling video data in various situations in smart city solutions are increasing. For example,
surveillance video for security, video monitoring of transport infrastructure and social infrastructure, people
flow analysis, such as disaster prevention measures, etc. But in many cases, such video data includes privacy
information that can identify an individual. It is, therefore, necessary to remove such personal information
that can become a violation of General Data Protection Regulation (GDPR) and Japanese regulations. Hence,
an application called "GANonymizer" is being developed as a solution that automatically removes objects
related to personal information using Deep Learning.

Video Image Privacy - GANonymizer

GANonymizer is an imaging processing tool to remove (make transparent) the pedestrians and cars recorded
in the driving record videos. Its objective is to avoid the privacy leakage when distributing and utilizing the
videos. The GANonymizer is developed using deep learning-based object detection techniques and is
currently designed to run securely on the KEIO’s secured mobile sensing platform for use case 3 & 4, for

addressing the privacy issue.

Figure 16: GANonymizer Test Results

The results of applying GANonymizer are shown in Figure 16.

- Upper row images are original video images
- Lower row images are after removing privacy objects, like cars and human objects.

GANonymizer consists of two parts of neural networks as shown in Figure 17.

34

5SD512[11] Auxiliary Context Layer GLCIC[T]

Figure 17: GANonymizer Architecture

In order to detect the target objects from the input image, which might violate the privacy, we adopt the
deep neural networks: Single Shot Multibox Detector (SSD). And in order to generate a more natural image,
we adopt Globally and Locally Consistent Image Completion (GLCIC) which is one of the most successful
models in image completion.

Single Shot multibox Detector (SSD)

SSD is one of the popular models that can detect the object with high accuracy. Especially, we select SSD512
which is the variant SSD model and performs higher than any others. Since the target objects are general and
those are contained in PascalVOC dataset, we use the model weights which are trained by PascalVOC.

Globally and Locally Consistent Image Completion (GLCIC)

After the target objects are detected, GANonymizer replaces the area where the target objects exist as if
there are no objects. There are a lot of completion methods using computer vision technology. We adopt
the in-painting methods which adopt the deep neural networks to succeed in generating the images more
realistic and natural.

GLCIC is based on Generative Adversarial Networks (GAN) and consists of three networks: the completion
network, a local discriminator network, and a global discriminator network. Since GLCIC requires an image
and corresponding binary mask for its input, GANonymizer creates the mask based on the bounding boxes
which are the outputs from SSD512. Then GLCIC reconstructs the mask part of the input image based on the
whole image and is trained by the procedure of GAN. The local discriminator assesses the quality of the mask
part of the input image which is completed by the completion network. Simultaneously, the global
discriminator assesses the quality of the entire image which is completed by the completion network. The
training is terminated when the discriminator networks cannot distinguish between the original input image
and the image which is reconstructed by the completion network, which is when the completion network
becomes able to reconstruct the mask part of the input image realistically and naturally.

In terms of object removal, it is significant to naturally reconstruct masks based on the various background
of images, Hence, for our GLCIC, we apply the model trained with the place’s dataset, which contains the
pictures of the various place, so that it can reconstruct the mask more naturally.

35

Currently, the prototype has been made only for testing purposes. There is no installation package of
GANonymizer yet, but we are planning some installation package in the future.

Required Tools and dependencies
The development environment for the current prototype of GANonymizer is as follows:

e CPU: Intel(R) Core(TM) i7-6950X @ 3.00GHz, GPU: NVIDIA GeForce GTX 1080 — 4 cores, RAM: 64GB,
and OS: Ubuntu

Licensing

Currently, the GANonymizer includes some proprietary code, but open source is planned in the next phase.

36

P2P Level Security and M-Sec Blockchains

The main focus of this Prototype is to implement the M-Sec blockchain framework, and to facilitate the
convergence of 10T security with blockchains in order to support an innovative smart city platform. We used
Ethereum-based blockchains as the basic foundation of M-Sec blockchain as it enables not only the exchange
of value (M-Sec tokens) but also the enforcement of smart contracts, which provides an additional feature
for the implementation and validation of the selected M-Sec use cases.

A milestone for the course of blockchain technology was the development of Ethereum project®, offering
new solutions by enabling smart contracts’ implementation and execution. It is a suite of tools and protocols
for the creation and operation of Decentralized Applications (DApps), “applications that run exactly as
programmed without any possibility of downtime, censorship, fraud or third-party interference”.

It also supports a contract-oriented, high-level, Turing-complete programming language’, allowing anyone to
write smart contracts and create DApps. Smart contracts are mainly written in the programming language
Solidity8-°.

We have initially experimented with different Blockchain platforms, before concluding to Ethereum based
blockchains such as Quorum and examined both public (unpermissioned) and private (permissioned)
alternatives of the M-Sec blockchains. The most prominent among them was “Hyperledger”, which is
described in the next Section. Hyperledger implementation was considered as it can enable, through specific
channels, the implementation of flexible blockchains with different permissions and authorization schemes.

The peer group management service is also part of the work covered in this task, as research will be pursued
for defining how the blockchain networks are going to be self-organized and structured in the context of
service provisioning so that they can form and operate the multi-layered architectures.

6J. Ray, "Ethereum Introduction," 11 12 2019. [Online]. Available:

""White Paper," [Online]. Available:
8 Ethereum, "What is Ethereum?," [Online]. Available:

° Ethereum, "Solidity," Ethereum, [Online]. Available:

37

https://github.com/ethereum/wiki/wiki/Ethereum-introduction
https://github.com/ethereum/wiki/wiki/Ethereum-introduction
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.ethdocs.org/en/latest/introduction/what-isethereum.html
http://www.ethdocs.org/en/latest/introduction/what-isethereum.html
http://solidity.readthedocs.io/

Hyperledger blockchain framework

We used three different open source Hyperledger Platforms and an overview of the overall architecture is
presented in the diagram that follows. The three projects are:

Providing details about the
underlying Hyperledger
Fabric Blockchain

e Hyperledger Explorer: it provides details
about the underlying blockchain such as

. Hyperledger Explorer
the number of blocks, the transactions, the [envo Transactions
Participants Reg\st‘rles
peers etC Assets Queries

e Hyperledger Composer: it facilitates the
development of smart contracts

uilds on
(“chaincode”) : .- Hyperledger Fabricv1.1
Blockchain
. . . Chaincode
e Hyperledger Fabric: it provides the World State - GouchDB

Validating Peers

permissioned blockchain
Figure 18: Representation of the architecture of our prototype
based on Hyperledger

Our implementation was based on a permissioned blockchain, but we should note that by granting open
access to all users, we would have a public-like blockchain.

Through Hyperledger Explorer (see Figure 19) we can inspect the Hyperledger Fabric Blockchain
(Transactions, Blocks and others.)

83.212.96,67) th +
HYPERLEDGER EXPLORER Select Channel -
composerchannel
4 PEER & BLOCK Y TX CHAINCODE
BLOCK #10 v O ox BLOCKLIST v C x BLOCKVIEW v C x
mumbar 1t Block TXNs Identifier [number, hash, tag]
previous_hash a68464570260c02feddc51011637b02270113¢972279f1ab9ch. #10 1
© Block
data_hash 8cf1c305943e7d910d21¢310742019090789c9bf9fac1 17ed1 5, #9 1
Transaction
Transactions 2814360cb06971bc3be50ff9ades c9b6f509b05c33. L1 1 m
#7 1
#6 1
NO TRANSACTION v C x PEERLIST v C x
org request

Figure 19. Hyperledger Explorer giving details about the underlying permissioned blockchain

38

Ethereum & Quorum blockchain framework

In this Section we present the details regarding the blockchain platform, in which we develop the smart
contracts that support the different use cases. As mentioned before, the different smart contracts are
written in the programming language Solidity° .

1. Private Ethereum Blockchain

During the development process we have used a local private blockchain named Ganache?!, which
allowed us extensive testing of the developed smart contracts. It provides a personal Ethereum
blockchain which we can use to run tests, execute commands, and inspect the state while controlling
how the chain operates. It provides a built-in explorer as shown in the following Figure 20 and allows
us to quickly see the current status of all accounts, including their addresses, private keys,
transactions and balances.

Q,) ACCOUNTS

et te s iy
| OxC7A5193cA24D68391716d1aF652bE9912DF6aD98 100.60 ETH il 78
| Bx416E6coBb40a12c24957CE3BbADBIOIAFDAFI6E 100,60 ETH gt
Ox8801F787781199C7EOC632875099b3A82bC FFS49 100.80 ETH i &
0x57C1092819DaA6ESda53cB723C3bAT062F 5260238 100.00 ETH 6 3 &
| 9xBc63fDCII6FICCT2ESCHF41332BEDIAG299B36D2 166.60 ETH o e S

Figure 20. Ganache Explorer allows us to examine all blocks, transactions, addresses and their balances

2. Public Ethereum Blockchain

Additionally, we deployed smart contracts on Public Ethereum Blockchain using browser IDE
“Remix”2. Remix is an open source tool that supports smart contracts development on the browser
and facilitates the deployment on local or public Ethereum-based blockchain platforms. We used
Ropsten public Ethereum blockchain®. It is important to extensively test the smart contracts before
we deploy them to the Quorum blockchain network (see next section), since the code can’t be
changed after deployment. To this direction, extensive testing was carried out on blockchains, by
using these two testing solutions: Ganache Cli, as well as the Ropsten Test Net.

10 Ethereum, "Solidity," Ethereum, [Online]. Available:
1 https://

12
13

39

http://solidity.readthedocs.io/
http://www.trufflesuite.com/ganache
https://remix.ethereum.org/
https://ropsten.etherscan.io/

3. Quorum blockchain framework

Finally, the different smart contracts are written in the programming language Solidity** and are
deployed on Quorum blockchain framework!®. Quorum is a permissioned implementation of
Ethereum which allows certified members to build and run decentralized applications that run on
blockchain technology. It is open source platform and supports smart contract privacy. Both private
and public smart contracts are validated by every node within the blockchain network. Additionally,
Quorum provides privacy and transparency, both at transaction-level and network wide.

In each Quorum node consensus is achieved with the Raft or Istanbul BFT consensus algorithms
instead of using Proof-of-Work. The P2P layer has been modified to only allow connections to/from
permissioned nodes. In Ethereum the notion of Gas was introduced (the fee or pricing value
required to successfully conduct a transaction or execute a contract on Ethereum blockchain
platform), while in Quorum the pricing of Gas has been removed, although Gas itself remains.

One of the features of Quorum that are of great value for the component is the network and peer to
peer permission management. This feature enables only the validated and authorized users to have
access and be a part of the network. Also, Quorum provides enhanced transaction and smart
contract privacy features.

= Lage: Gem | Commianon el Sarvwr Configuration Comple & Dugtoy Comacts Dwgoyed Conmmon

Permission-based nature of

- TOTAL CONTRACTE AN/

ANy |

- . -v"'-‘ ohon 00 @ Astene !

Quorum enables the constitution
of private and public transaction
getting the best of both worlds,
open transactions are analogous
to Ethereum but when it comes v o s soscs e e

to the private transaction then it x | | l . i

el
v oo on oSN echen z00 W Ase.

is confidential, and the data is not
exposed to the public. Quorum 5
adds privacy functions that allow
for private transactions that are
only visible to the transacting

parties, while the other parties in

the network would only see a

hash. Finally, Quorum is) . .
Figure 21: Details about blocks, transactions, addresses and smart

considered to be very fast and contracts

being able to process even

14 Ethereum, "Solidity," Ethereum, [Online]. Available:
15

40

http://solidity.readthedocs.io/
https://docs.goquorum.com/en/latest/

4.

thousands of transactions per second, due to its efficient consensus mechanism which belongs to
the family of Byzantine Fault Tolerance (BFT) mechanisms?®.

In order to develop and deploy the smart contracts to Quorum blockchain, we have used Truffle
suite!’. It is a development environment and testing framework using the Ethereum Virtual Machine
(EVM). Additionally, we use Quorum Maker®, which facilitates the deployment of smart contracts,
offering visualization features to monitor the Quorum blockchain network and related blocks and
transactions. Before we deploy the smart contracts to the blockchain network, we extensively tested
them on Ethereum blockchains using two testing solutions: Ganache Cli, as well as the Ropsten Test
Net. Additionally, before being deployed on a larger Quorum Network, we used a Quorum test
network consisting of seven nodes?®.

Smart contracts are written in Solidity so it is feasible to migrate from Quorum permissioned
Blockchain Framework to public Blockchain Frameworks (e.g. Public Ethereum Network), since
Solidity is the common programming language to Ethereum based blockchain frameworks.

ALASTRIA

Alastria is neither a public-permissionless network nor a private consortium, is a Public-Permissioned
network it means that shares some of the properties of both types of networks, and it also has some
requirements of its own.

The prevailing public-permissionless blockchain networks currently in production like Bitcoin or
Ethereum have the very desirable
property of being “Trustless”. Trust continuum
However, mainly due to the

Publi twork Privat rti %
characteristics of the consensus (Bicon, Enereum) (Quorum, Fyperiedger) EnterPrise systems
algorithms used to achieve that Trustless< @) O Q>Centralized
property, they suffer from very
well documented Scalabi“ty Everybody votes Vote only few Vote only one
prob|ems_ There are a IOt Of 3 - 10 transactions/sec High performance (100K tx/s)

. PoW algorithm, iri hort s " . -
efforts bE|ng made to SOIVe or ° ?ngzgtivza{ieoqnu;znrgixzzs = More efficient algorithms, without mining
a||EViate the Scalability pl"Oblem, High transaction costs and volatility Low transaction costs, predictable
bUt as Of today the problem Stl” Privacy difficult: All data public Privacy-enhancing mechanisms

7
exists and permissioned networks
will always have several orders of Figure 22: The Trust Continuum

magnitude better performance.

16 yukoli¢ M. (2016) The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. In: Camenisch J.,
Kesdogan D. (eds) Open Problems in Network Security. iNetSec 2015. Lecture Notes in Computer Science, vol 9591.
Springer, Cham

41

https://www.trufflesuite.com/
https://github.com/synechron-finlabs/quorum-maker
https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

The Problems of the blockchain networks are:

e Scalabilty: The networks choose Decentralization and Security over Scalability.
Taking into account the words of Vitalik Buterin describing the “Blockchain trilemma®®”, the
trilemma claims that blockchain systems can only at most have two of the following three
properties:

o Decentralization, defined as the system being able to run in a scenario where each
participant only has access to O(c) resources, where c refers to the size of computational
resources available to each node (i.e. a regular laptop or small VPS “Virtual Private
Server”).

o Scalability, defined as being able to process O(n) > O(c) transactions, where n refers to
the size of the ecosystem in some abstract sense.

o Security (or Safety), defined as being secure against attackers with up to O(n) resources

e Transaction Costs: High and Volatile

e Privacy: By default, in public blockchains like Bitcoin or Ethereum, transactions are executed by
all nodes in the network, transactions are globally published and state data is not encrypted in
most applications, so all participants have access to all data stored in the ledger without any
restriction.

Alastria: a Public-Permissioned network

Public networks Private Enterprise
(Bitcoin, Ethereum) consortiums systems

Trustless < Q<~~? O (@) > Centralized

Public-Permissioned network, compatible with regulation

Depends on a trusted validator set => “Good enough”

No cryptocurrency embedded => low and predictable transactional cost
Higher performance and scalability (>1.000 tx/sec)

Transaction finality in one block, with legal validity (legal identities)

... but requires implementing a novel Decentralized Governance Model

Figure 23. Alastria in the Trust Continuum

In networks, the objective is to maximize decentralization and safety, even if
this goes to the detriment of scalability. In this context, decentralization typically means the ability
to transact anonymously but safely among individuals without the need for any intermediary acting
as trusted party. It is often the case that the requirement to eliminate third parties is stronger than

20

42

https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df

the requirement that the system be high-performance so it could be used as a general purpose
transaction mechanism.

In Private Consortiums the objectives are generally different, and instead of trying to eliminate third
parties at all costs, they try to use blockchain technology to improve efficiency and reduce costs of
transaction among the partners composing the consortium. In many private consortiums, they want
a shared database and transaction system so they can eliminate frictions and reduce costs of
reconciliation.

Alastria tries to be as public as possible, but without the disadvantages associated with public-
permissionless networks.

As mentioned before, Alastria is not a Private Consortium but a Public-Permissioned network
compatible with regulation instead. At a very high-level, the characteristics of Alastria are the
following:

e It's permissioned, so every participant node has to be identified before it can participate in
the network.

e No cryptocurrency embedded.

e A more efficient consensus algorithm, enabling higher performance and scalability.
e Transaction finality in one block, enabling legal validity of executed transactions.

¢ Implements legal identities of all participants.

For further information check the GitHub page of Alastria?!.

5. Smart Contracts

Smart Contracts are an instance of a computer program that runs on blockchain. In the case of
permissioned blockchain such as Quorum, where only authorized users are able to interact with the
ledger, an authorized user can create a contract by posting a transaction to the blockchain. It is
important to notice that its code is fixed and cannot be changed after deployment. The code’s execution
is provoked by a received message either from a user of another contract and could provide utility to
other contracts or require assistance from other Smart Contracts.

In this section we describe the different smart contracts developed to support the M-Sec use cases as
well as some of the functionalities they provide.

1) M-Sec Token

A custom token was created specifically for research purposes. It is actually a cryptocurrency in the
form of a smart contract running on Quorum Blockchain. It follows the ERC2232* token standard.
Preliminary implementations followed the ERC20 token standard but ERC223 is a superset of the
previous standard offering security improvements and more usability and backwards compatibility

21

22

43

https://github.com/alastria/alastria-platform/blob/master/en/Alastria-Core-Technical-Platform.md#alastria-core-technical-platform
https://github.com/alastria/alastria-platform/blob/master/en/Alastria-Core-Technical-Platform.md#alastria-core-technical-platform
https://github.com/ethereum/EIPs/issues/223

with any services and functionalities designed and developed for ERC20. As fully compliant with
ERC223, it implements a set of functions and events, such as name(), transfer(), totalSupply() and
Transfer event which is emitted to the blockchain when an amount of Tokens is transferred from a
user to another.

This Token has different applications in the use cases. It is firstly used as a payment currency to
exchange value among the users of the Marketplace. Another implementation and configuration of
the M-Sec Token allows us to use it as a “Social Token”. Users of the platform have an initial balance
and particular users are rewarded with more token based on specific criteria such as for example:

i) the most active user,
ii) the most social user,
iii) the user who uploaded the most popular content.

This Token acts as a mean to tokenize a loyalty points program with rewards.

Table 4: Overview of M-Sec Token's functions

In the following Table 5 more details are provided about the developed functions and events of the M-Sec

Token:

Table 5: Detailed presentation of functions and events of M-Sec Token

NAME INPUT RESPONSE DESCRIPTION
TOTALSUPPLY uint256
- Get the total token supply
(FUNCTION) totalSupply
NAME (FUNCTION) - string _name Get the name of token
bytes32
SYMBOL (FUNCTION) - Get the symbol of token
_symbol
DECIMALS (FUNCTION) - - Get decimals of token
. Get the account balance of an
BALANCEOF uint256 .
address _owner account with address: address
(FUNCTION) balance
_owner

44

2)

3)

NAME INPUT RESPONSE DESCRIPTION
address _to, Transfer tokens, compatibility
TRANSFER (FUNCTION) X boolean .
uint _value with ERC20
function that is always called
when someone wants to transfer
address _to, . .
] tokens. This function must
TRANSFER (FUNCTION) uint _value, boolean .
byt dat transfer tokens and invoke the
es _data
M= function tokenFallback if _tois a
contract.
address indexed
_from, address Triggered when tokens are
TRANSFER (EVENT) indexed _to, - transferred and is emitted to the
uint256 _value, blockchain network
bytes _data
A function for handling token
address _from, L
TOKENFALLBACK i | transfers, which is called from
uint _value, -
(FUNCTION) - the token contract, when a token
bytes _data
holder sends tokens

Item Manager Smart Contract

The Item Manager Smart Contract allows the interaction of item/content creators (e.g. photos,
multimedia items, sensor data etc.) with the platform and the blockchain. A user is able to upload all
the information and metadata related to an item. To this direction, we have created dedicated
structs (Figure 24), which are a special feature of Solidity contract-oriented programming language,
in order to store for each item, the details (e.g. tags, information, metadata) and the unique address
of its owner.

L <conTrRacT>

A4

9 Quorum

Contract

</conTracr>

Figure 24. Item Manager Smart Contract

Sensors Smart Contract

This smart contract records all the registered loT sensors. It gives the possibility to register a sensor
and to change its information afterwards as well. Dedicated Solidity structures were created to store
this information and functions to allow its retrieval.

45

A structure that allows the storing of the information is the following:

Figure 25. Sensors Smart Contract

4) Inthe following Table 6 more details are provided regarding our Sensors Smart Contract:

Table 6: Sensors Smart Contract details

NAME INPUT RESPONSE DESCRIPTION
address sensor-Owner
uint8 type-of-Sensor
uint MSec-Token-Price Registration of a sensor to
the dedication structure of
uint32 timestamp-of- ;
REGISTERSENSOR e P Boolean t::e srrllartcjcgnftract V\{Ith
(FUNCTION) success the re ate. n Qrmatlon.
uint16 frequency Upon registration a
verification of registration
int32 latitude is returned
int32 longitude
string url
uint8 type-of-Sensor
uint MSec-Token-Price
uint32 timestamp-of- The owner of the sensor
start Boolean changes some of the fields
CHANGESENSORINFO . for example the price in
uintl6 frequency success .
M-Sec Tokens or its
int32 latitude position
int32 longitude
string url
Uint32 sensoriD This function is called
. ' when a user wishes to buy
BUYSENSORDATA uint32 fromTime data for a specific time
uint32 toTime interval and communicates
with M-Sec Token to

46

5)

NAME INPUT RESPONSE DESCRIPTION

perform this transaction

It is important to notice that functions like changeSensorinfo succeed only when the owner of the
sensor (specific address) attempts to change the fields, otherwise the access is denied.

The function BuySensorData directly communicates with M-Sec Token smart contract, when a user
wishes to buy data for a specific period. If the user has sufficient funds and the information is correct
then the transaction will be successfully completed. Upon success the event Transfer is emitted to
the network informing the users who watch the smart contracts that this transaction took place.

Know Your Customer Smart Contract

A huge number of financial banking transactions takes place every day. It is indicative that in July
2019 the Society for Worldwide Interbank Financial Telecommunication (SWIFT) recorded an
average of approximately 32 million transactions per day. Blockchain can enable parties with no
particular trust in each other to exchange digital data on a peer-to-peer basis with fewer or no third
parties or intermediaries. In the recent report Scientific and Technical Research Report of European
Commission on Blockchain?®, the need for Know Your Customer mechanisms is highlighted: “the
obligation of cryptocurrency exchanges and custodian wallet providers within the scope of EU
regulation to implement mechanisms to counter money laundering and terrorist fundraising, such as
‘know your customer’ (KYC) “.

It is evident that previously mentioned works involve value exchange through blockchain
transactions and dedicated created smart contracts, making Know Your Customer process necessary.
In this direction, we are presenting an approach which blends smart contracts for exchanging value
in the loT domain on a decentralized manner, integrating a KYC process handling on chain and off
chain data.

Recent works have tried to tackle the problem of data management and KYC for blockchain
applications. Shabair et al.?* introduced a blockchain-based KYC proof of concept system and an
orchestration tool for managing private blockchain environments over large scale test beds. In their
work they highlight the need for additional research on security and privacy issues of blockchain

|25

applications. Norvill et al.> presented a demo of a system that allows automation and permissioned

document sharing in order to simplify and reduce the work required by the KYC process, while Zhang

A, Anderberg et al., “Blockchain Now And Tomorrow,” 2019.

24 W. Shbair, M. Steichen, and J. Francois, “Blockchain orchestration and experimentation framework: A case study of
KYC,” in The First IEEE/IFIP International Workshop on Managing and Managed by Blockchain (Man2Block) colocated
with IEEE/IFIP NOMS 2018, 2018.

5 R. Norvill, M. Steichen, W. M. Shbair, and R. State, “Blockchain for the Simplification and Automation of KYC Result
Sharing,” in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 9-10.

47

6)

and Yin?® conducted a research on a digital copyright management system based on blockchain
technology. They focused mostly on PBFT (Practical Byzantine Fault Tolerance) consensus
mechanism improved by Tendermint?” replacing original Ethereum POW (Proof of Work), digital
signatures and smart contracts to design user account management strategies, copyright review and
applications for the needs of digital rights management. In our work we further explore the design
and implementation of smart contracts for the KYC process on a decentralized approach.

Blockchain is beginning to transform industries and there is an increasing interest in exploring its
potential for various production use cases, especially for supporting multi-party processes where
members don’t necessarily trust each other. However, there are many challenges that remain to be
addressed such as trade-offs between respecting privacy and supporting transparency. Bhsaskaran
et al® described the design of smart contracts for consent-driven and double-blind data sharing on
the Hyperledger Fabric blockchain platform?® into a KYC application, where the data are submitted,
validated and kept within the ledger supporting different consent rules and privacy levels.

Vishwa et al.3® presented a decentralized data management system for data privacy and control
focusing on multimedia files. In their solution they use an external data lake, namely a centralized
data storage solution on a cloud to store the transaction details of all the data added on the
blockchain. In order to access the blockchain, a user signs up by broadcasting his identity and will be
accepted by the consent of the majority of the nodes and will be provided his new identity and
access permissions. In our approach we additionally use IPFS leading to a decentralized application
and have successfully implemented smart contracts and software components, leveraging
blockchain to automate tasks related to KYC process.

Our process of developing the smart contract to support KYC process is described through its use in
the middleware services section.

Smart City Data Smart Contract

This smart contract focuses on managing data from the smart cities of Santander and Fujisawa and
supports the use cases. It directly communicates with other tools of M-Sec project such as encrypted
data storage and off chain storage. It is an ongoing work and the final results will be described in
details in the next iteration of the Deliverable D4.6 from T4.3. Additional flows are created as part of
middleware services to support the interaction and integration with the rest of the platform.

26 ¥, Zhang and Y. Yin, “Research on Digital Copyright Management System Based on Blockchain Technology,” presented
at the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),
Chengdu, China, 2019.

27 Jae Kwon, “Tendermint: Consensus without Mining.” 2014.

2 K, Bhaskaran et al., “Double-blind consent-driven data sharing on blockchain,” in 2018 IEEE International Conference
on Cloud Engineering (IC2E), 2018, pp. 385-391.

Hyperledger Fabric,” Hyperledger

30 A, Vishwa and F. K. Hussain, “A Blockchain based approach for multimedia privacy protection and provenance,” in
2018 IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 1941-1945.

48

Middleware Services

This component refers to all the implemented basic blockchain services that include services such as search
and indexing of the P2P network resource, advertising & discovery services, and messaging services for
exchanging messages between the peers.

Quorum KYC Smart Contract
IMANAGE USER ACCESS EXPIRY
DATE.
(Create, Read, Update)
©®
i Registration Enter Blockchain Network
sign up / p
% signin. [Kveur |- with User ID —
/
USER
Permissioned|\ Block
Network -
KYC Documents Isolated USER ID
Blockchain EXPIRY DATE
Environment PREFERENCES

-
1PFS \

KYC docs-approving ENTITY

Figure 26. Overview of the KYC process for the M-Sec Platform

The KYC service as part of M-Sec Blockchain Middleware Services allows us to have a system where
anonymity is maintained among user choices. The user identification has already been done outside
the blockchain network, while no one inside the blockchain network is aware of the user's real
identity. In this way M-Sec Platform will use KYC service to have services been delivered to users
while hiding their true identity from their service provider or other users.

The M-Sec KYC Solution Concept includes the storage of personal data on an off-chain database
while the user is able to connect to the M-Sec Platform (and the blockchain network) using a special
ID not relevant to his real identity. So, the User Verification is conducted by an External Certificate
Authority before accessing the system while the user uses the hash ID provided to him to interact
with the System, as shown in the Figure 26.

Additionally, we have integrated the feature of the Expiration date. The System maintains an Expiry
Date of users in the blockchain network. This information is stored within the smart contracts not in
an external centralized database.

49

2. IPFS: InterPlanetary File System

Aiming to a more decentralized design we integrated blockchain with IPFS, a peer-to-peer version-
controlled protocol and filesystem, run by multiple nodes, storing files submitted to it*!. It combines
distributed Hash Tables, Block Exchanges and Merkle Trees.

Using middleware, users are able to upload content to IPFS and place its unique hash code (address
of the file) to the smart contracts running on Quorum blockchain. If we use a central database for
storage, we benefit from the high throughput, but this centralization does not coincide with the
decentralized nature which blockchain advocates leading to a Single Point of Failure (SPOF) of the
whole application. Facing the aforementioned drawback, IPFS being a peer-to-peer (p2p) file sharing
system and Blockchain’s complementary component, settled exceptionally the SPOF problem,
furnishing low latency and data distribution.

3. On-chain, off-chain data and access control

One of our goals is to design a blockchain-based decentralized content marketplace, which enables
trustless disintermediation between sensor owners (and more generally data owners) and
consumers. Using a dedicated created cryptocurrency (M-Sec Token) for payments, a consumer can
buy data on the marketplace without involving a marketplace intermediary. This refers to the
research and development of data privacy-enhancing mechanisms along with data access control
and privacy policies that are necessary for the M-Sec framework. Moreover, it deals with the
separation of data, meaning to identify what needs to be pushed on blockchain and what to remain
off-chain, a decision that is always critical when designing blockchain platforms

4. Transaction Handler

One of the main and most important features of the Quorum is the private transaction mechanism.
Transaction privacy is achieved by using the Ethereum Transaction Model and enhancing it with new
parameters that specify the nodes in which the transactions should be published. The Constellation
layer of Quorum that contains the transaction Manager and Enclave module is responsible for the
private transaction handling. All the public transactions follow the already established p2p Ethereum
network flow.

Additional mechanisms are implemented that:

i allow only authorized users to commit a transaction and have access to the blockchain,
ii. verify the identity of user using cryptography algorithms,
iii. in case he is about to receive some data/service in exchange of M-Sec Tokens it is
verified that he has already made the purchase.

31 Chen, Y., et al.: An improved P2P file system scheme based on IPFS and Blockchain. Big Data (Big Data), IEEE
International Conference on (2017).

50

The Transaction Handler could be regarded as a flow providing a layer before blockchain that
performs a first process of the potential transactions to formulate them and optimize and verify
the content to be inserted in the blockchain.

Upload Handler

This part of the Middleware Services provides functionalities for efficiently performing actions
related to Assets. As an asset we could consider a file, a multimedia item, a dataset that could be
described with a predefined set of fields such as:

i. Title
ii. Timestamp of start
iii. Timestamp of end (whether applicable)
iv. Owner/Creator name (or Address)
V. Price in M-Sec Tokens

vi. Description
vii. Location (latitude and longitude)
viii. URL related to the storage of the asset

All these functionalities are related to Smart Contracts in which we have defined Solidity structs
keeping record of uploaded assets/items and we have additionally define related fields for
metadata. These functionalities include:

i. Uploading of an item by providing its details, as specified previously so it can be
registered to the Iltem Manager Smart Contract.
ii. Browsing through all the available items registered in the smart contract.
iii. After specifying some criteria, the user is able to view an asset and its metadata.

Write/Update Metadata of Asset

This service is strongly connected to the Transaction Handler. As an indicative case, only the
authorized users are allowed to update the metadata of an item. The user who has the right to
update is the owner of the item or a user with a specific permission. The service handles the
communication with the smart contracts and checks the rights of a user.

51

Required Tools and dependencies

e Truffle Suite
e Solidity Programming Language
e Quorum Blockchain
Installation Guide
1. Install Truffle Suite
Truffle suite:

npm install truffle -g

More installation instructions could be found in the following link:

2. Install Solidity
Ethereum, "Solidity," Ethereum, [Online]. Available at:

3. Install Quorum Blockchain Network

Licensing

Quorum, the go-Ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU

Lesser General Public License v3.0

Solidity is licensed under GNU General Public License v3.0

52

https://www.trufflesuite.com/truffle
http://solidity.readthedocs.io/
https://github.com/synechron-finlabs/quorum-maker
https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

1.7 loT Marketplace

The goal is to create decentralized 10T ecosystems and validate their viability and sustainability. To this
direction we defined and implemented a novel marketplace where smart objects can exchange information,
energy and services through the use of virtual currencies allowing real-time matching of supply and demand
enabling the creation of liquid markets with profitable business models of the IoT stakeholders. In this
section we cover the basic technical implementation details of the M-Sec marketplace: market participants,
from loT devices to humans using mobile applications are able to exchange data and value through the M-
Sec blockchain implementation.

4
) @ 2:seealldata ﬁ
: Buyer |« 3:retrieve data descripti E z i 1:register sensor
tjc:: St o il
_
4

H= -

Node-Red

Service

| 5:contracts
and payment

Fujisawa city Santander

= =

«i

Data Provider/
Seller (Sensor
owner)

Front 4:buy data >

End)®G:succsefull payment «;

& passcode

ANV
Smart Contracts running on
Quorum Blockchain Platform &
communicate with each other

7:passcode and request data
8:send data

Figure 27. Overview of the M-Sec loT Marketplace and its components

In Figure 27, we can see an overview of the developed marketplace and its components, explained in detail
through for a specific example use of it.

1.

The owner of a sensor/data source who wishes to make his data available for purchase or exchange
register himself to the dedicated created smart contract providing information about the type of the
data, their frequency, the price, the location etc.

A User of the M-Sec Platform who acts here as a potential buyer using our developed front end can
see all the available sensors and their data

Upon finding some interesting data he/she can retrieve additional detailed descriptions about them
and then

Buy the data of interest using M-Sec Tokens, which is a cryptocurrency in the form of a smart
contract running in on blockchain presented in previous section

53

The deployed smart contracts communicate with each other to verify the sufficient funds of the
buyer and complete the purchase by transferring funds from the balance of the buyer to the one of
the data owner. The developed Node-Red flows also assist in this process connecting the different
components of the system

In the case of successful payment, when the buyer has sufficient funds and after the tokens are
transferred, a passcode is returned to the buyer necessary for accessing the purchased data

The buyer communicates with the platform and the API of the data owner and using the transactions
details requests the data

The desired data is returned to the buyer in a predefined format such as JSON.

54

Node-Red Flows

In order to orchestrate the different components and services we have used Node-Red and have developed
several flows. Node-Red is a powerful visual tool for wiring together hardware devices, APIs and web-
services, create flows that connect distributed components into a common loT application32. Different flows
for the different parts of the loT Marketplace were developed.

During the development of the system we simulated the loT weather sensors provided by public APIs and for
this simulation we used an API provided by Dark Sky3. Using Node-RED features we created flows that
request current weather data for several locations from the Dark Sky APl and then save these data (air
temperature, relative humidity, pressure, visibility, wind speed and direction, sky cloud coverage, dew point,
UV radiation and the columnar density of total atmospheric ozone layer) into a local database. We also
exposed a RESTful API in order to serve the data to the users when requested. When a request is received,
the API key is checked. If it is correct, the data responding to the specified time intervals is retrieved from
the database and then sent to the requester.

_ — Transform data before DB

- query create tables (darksky) [—

o EYE=E — R, — oo — S o
e N @ connected o
O ‘--7_: timestamp ’-—~) empty tables (darksky) ——_— Output from mysql —m.
N 5 . onnecled
@

create tables (darksky) (i

ot — EIE) ®

!_il[timestamp]~ drop tables (darksky) —_—

Figure 28. Node-Red Flow for the simulation of loT sensor data

Blockchain Smart Contracts

Different smart contracts are implemented in the programming language Solidity to support the different
use cases.

Some of the developed smart contracts were described in detail previously:

1. M-Sec Token: Digital cryptocurrency in the form of a smart contract in Solidity language running on
blockchain.

32

3 The Dark Sky Company, LLC, "Dark Sky," The Dark Sky Company, LLC, [Online]. Available:
55

https://nodered.org/docs/
https://darksky.net/dev

2. Sensors Smart Contract: responsible for registering sensors and recording transactions for loT sensor
data.

3. Smart City Data Smart Contract: responsible for handling data from Smart Cities.

Web Application

This web application provides interfaces between the users and the blockchain. It provides functionalities
helping users interact with the smart contracts deployed on Quorum Blockchain and access data they have
bought. It also allows sending transactions to and reading data of transactions and smart contracts. It also
“protects” users from misreading or mistyping info when sending a transaction.

We have used different languages and technologies to create these interfaces such as JavaScript, Bootstrap,
HTML, jQuery, Nodejs. Some of the developed interfaces are described below with screenshots and details.
We have used Web3.js to interact with the deployed smart contracts.

The user searches in all the available sensors registered in the Smart Contracts the sensors of interest
specifying details in the corresponding fields such as the location, the type the data (temperature, starting
date and time, frequency etc.), as shown in Figure 29.

ule dvdilduie selisuis

farch by location

i ot 018G % RN | 1o
ller Sensor ID Sensor Type Price (M-Sec Tokens) First data at Frequency Map Buy Data

f0f1b4ae53ae6079bf3c8da97119cf48893b7c3c 1 temperature 0.001 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -
0f1b4ae53ae6079bf3c8da97119cf48893b7c3c 2 humidity 0.001 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -
f0f1b4ae53ae6079bf3c8da97119¢f48893b7c3c 3 pressure 0.002 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 -
f0f1b4ae53ae6079bf3c8da97119cf48893b7c3c 4 visibility 0.006 Wed Nov 22 2017 17:57:35 GMT+0200 (EET) 2 e

Figure 29. Graphical User Interface enabling searching of sensors in the smart contracts running on blockchain

After specifying all the required information, a query is submitted to the smart contracts running on the
Quorum blockchain and a list of all the available sensors is returned with information of the address of the
data owner, the sensor type (temperature, pressure, visibility etc.), the frequency, a link opening a map and
the option for the user to buy these data using M-Sec Tokens, as shown in Figure 30.

56

Il the available sensors

Show Search

Search by location

Sensor Price
Seller 1D Sensor Type (NTUATok) First data at Frequency Map Buy Data

0x3808843762dcf4f8c0ae08f03e4355fdddedTdaf 1 temperature 0,001 Wed Nov 22 2017 2 -
17:57:35 GMT+0200

(GTB Standard Time)

0x3898843762dcf4f3c0ae08103e4355fddded7daf 2 humidity 0.001 Wed Nov 22 2017 2 -
17:57:35 GMT+0200

(GTB Standard Time)

0x3808843762dcf4f3c0ae08103e4355FdddedTdaf 3 pressure 0.002 Wed Nov 22 2017 2 -
17:57:35 GMT+0200

(GTB Standard Time)

0x3898843762dcf4fac0ae08103e4355fdddedTdaf 4 visibility 0.006 Wed Nov 22 2017 2 -
17:57:35 GMT+0200

(GTB Standard Time)

Figure 30. Graphical User Interface of the returned results after the query to the smart contract

An overview of the blockchain and the transactions included in each block is provided in our developed
Explorer interface, as shown in Figure 31. The user is able to search for specific blocks, transactions, users,

contracts and see the related activity.

ill the transactions

Select TxHash

Select block No

Select Contract

log T
Index Index
o o
@ 0
o o
o o

Broker v

Block

Tx Hash Block Hash Humber Contract Address (Contract Name) Type Event

0x7495f68c02351771100953161ea04d 1 1cbd383c1a86d598aBe2a5adli2b3ciIac DxidbT0266205c2ciE6MeEc00ebedBee 6iccde5998833681bantiE699a 1bab2 3 0x3162447d138985e24038c13b67181282b61deS6c mined SensorCreated
(Broken)

0x711dc3eal6efBcefb20602¢80511925202599f1 240002304MSIE 15006769 DxeS7d5200602¢4941868102ef21 0847307041 feeb62697524caB420c3d 1be68s 4 0x3162447d1389056240353b67181282661de56¢ mined SensorCreated
(Broken)

[14842d5c336406b 73322 OxSab70840835900642160e421casi3353ebTd2ef3d31ed0d6e590bS5THc302d2 § 0x3162447d138985624038cf3b67181282061de56c mined SemsorCreated
(Broker)

0x88c5548cc05cAT0a0BC 233291 2/5545543903e 1 1ccbTHECEbcSOcbdd0RScd Drfca764fdd0f2e6a636899032413bab2BEdedcfa295 1 Je15efSe2cThSaf2053 6 0x3162447d138985e2438c£3b67181282b61deS6c mined SensorCreated
(Broken)

Figure 31. Graphical User Interface of the Explorer

Installation Instructions

Required Tools and dependencies

The following tools and dependencies are required to install and use the loT Marketplace:

NodeRed

Nodejs

MySQL

Ethereum/Quorum Blockchain
Nodejs and Javascript

57

Install NodeRed

e Node-Red: Node-RED is a powerful visual tool for wiring together hardware devices, APls and web-
services, create flows and connect distributed components into a common loT application
[https://nodered.org/].

Install Nodejs

e Node.js: Before installing Node-Red, a Node.js installation is required. We have installed Node.js
version v8.9.3.

Install MySQL

e We used the MariaDB SQL, but any other SQL relational database can be used. Full instructions of
how to install MariaDB database can be found here:

Install Front End

e Front End: We have developed a web front end, useful for end users of our application. It provides a
Graphical User Interface
o Based on HTML, Javascript, Vue Javascript framework and other libraries
o Running: it is deployed on our server (and cloud servers as well) and accessible in

Install Java

e Most of the systems used are built on top of java engines so a Java distribution needs to be installed
in the system before anything else.

Install Ethereum/Quorum Blockchain

Instructions are provided in the previous Section related to the Blockchain demonstrator.

Operating System

e We have tested the platform on Windows 10 and Ubuntu 18 but all of the software listed here is
available in a large number of other distributions.

Okeanos

o Okeanos: We have deployed our Node-Red and Neo4j services to Okeanos cloud service for
Greek Research and Academic Community ()

Licensing

Since ICCS/NTUA is a non-profit Academic Research Body, we will be releasing all related M-Sec results as
open source contributions under Open Source licenses. Concretely, permissive licenses, as are not restrictive
licenses and it can be used to create a proprietary good, allowing a commercial exploitation and ensuring
high impact. Examples of those are: Apache, BSD, etc.

58

https://downloads.mariadb.org/
http://snf-755174.vm.okeanos.grnet.gr/
http://snf-755174.vm.okeanos.grnet.gr/
https://okeanos.grnet.gr/home/

models have been proposed by many researchers as an innovative solution for
guaranteeing a minimum level of security between two entities of a distributed system that want to have a
transaction or interaction. Thus, many studies, works and models have been designed, carried out and
developed in this direction, leading to a current solid research field on which both academia and industry are
focusing their attention. Many methods, technologies and mechanisms have been proposed in order to
manage and model trust and reputation in systems such as P2P networks34, ad-hoc ones35, wireless sensor
networks36 or even multi-agent systems37. Such methods have been used in many environments like P2P
networks, Wireless Sensor Networks (WSN), Vehicular Ad-hoc Networks (VANETSs), Identity Management
Systems, Collaborative Intrusion Detection Networks (CIDN), Cloud Computing Systems, Application Stores
and of course the loT.

T&R management is a very useful and powerful tool in environments where a lack of previous knowledge
about the system can lead participants to undesired situations, specifically in virtual communities where
users do not know each other at all or, at least, do not know everyone. It is in those cases where the
application of trust and reputation mechanisms is more effective, helping a peer to find out which is the
most trustworthy or reputable participant to have an interaction with, preventing thus the selection of a
fraudulent or malicious one. Most of the current T&R models in the literature follow four general steps
which are described by Marti and Garcia-Molina38 (Figure 35):

1. Collecting information about a certain participant in the community by asking other users their opinions
or recommendations about that peer.

2. Aggregating all the received information properly and somehow computing a score for every peer in the
network.

3. Selecting the most trustworthy or reputable entity in the community providing a certain service and
effectively having an interaction with it, assessing a posteriori the satisfaction of the user with the
received service.

4. Punishing or rewarding according to the satisfaction obtained, adjusting consequently the global trust
(or reputation) deposited in the selected service provider.

34F. Almenarez, A. Marin, C. Campo, C. Garcia, “PTM: a pervasive trust management model for dynamic open
environments”, First workshop on pervasive security and trust, Boston, USA; 2004.

35 M. Moloney, S. Weber, “A context-aware trust-based security system for ad hoc networks”, Workshop of the 1st
International Conference on Security and Privacy for emerging areas in communication networks, Greece; 2005, pp.
153-60.

36 Boukerche, L. Xu and K. El-Khatib, “Trust-based security for wireless ad hoc and sensor networks”, Computer
Communications 2007.

37). Sabater and C. Sierra C, “REGRET: reputation in gregarious societies”, Proceedings of the 5th International
Conference on Autonomous Agents, Canada, 2001.

38 5, Marti and H. Garcia-Molina, “Taxonomy of trust: categorizing P2P reputation systems”, Computer Networks 2006.

59

®

Direct A:g::::;tzg:z & Pre-trusted Raters
@ Gathering experiences entities reliability
Information =
Gathering Checking
ranking Information /N Integri
ransaction

@ Entity "
selection Recommendations history
Scoring & Fuzzy Bayesian

5 Reward & ranking Analytic | |Bio-inspired
Punish

> Scoring &

Reputation Trust

Entity Reward &
selection Punish
Selected - T, w- Received
entity service

Figure 32: General steps followed in T&R models.

Currently, the idea of using a T&R engine on top of the Blockchain Middleware Services and the loT
Marketplace (already described in the previous sections) is being investigated. Such an engine would
enhance the security mechanisms of M-Sec and make it possible to evaluate the actual content being shared
through the Blockchain and the Marketplace, thus ensuring the trustworthiness of the several actors
participating in the exchange or sharing of information, data and services.

The M-Sec T&R model (M-Sec T&RM)

Different models manage concepts such as Trust or Reputation in many different ways. Although there are
some generic data structures for the domain of T&R provided for example by the Open Reputation
Management Systems (ORMS) of OASIS*®, there are no standards for concepts like Trust and Reputation. In
this subsection we try to provide some clear definitions of the main concepts that build up the M-Sec T&R
model, and the main features that characterize it. In M-Sec T&RM we define Trust and Reputation as
follows:

e Trust: The expectation that an interaction will be satisfactory based on our personal experience.
e Reputation: The belief that an interaction will be satisfactory based on the experience of our social
circle.

Node A will have a high Trust index for Node B if the services provided from Node B to Node A have been
evaluated from Node A positively. Node A will have a high Reputation index for Node B if the services
provided from Node B have been evaluated from the social circle of Node A positively.

39 0ASIS:
60

https://www.oasis-open.org/committees/orms

Definitions

The distinction between a trust and a reputation model is not always clear. However, in our opinion, those
models making an explicit use of other participants’ recommendations could be categorized as reputation
models while the rest could be considered just as trust models.

Let’s assume that actor-1 wants to find out some social characteristics of actor-2 for a specific service
offered. The following terms can then be defined:

e Popularity (P): A counter which monitors how many times actor-2 has received or may receive a request
(how many “hits” it has). The Popularity Index is an accumulative and comparative indicator, and is used
to determine the stability of Reputation and Trust.

e Trust (T): The belief of actor-1 that actor-2 is going to deliver the correct service based on previous
interactions of actor-1 with actor-2. The Trust Index of actor-2 provided by actor-1 is a property which
states how many times actor-2 has successfully shared its services with actor-1. Trust is “subjective”,
because it is estimated from perspective of the individual trustor (actor-1 in this case).

e Reputation (R): The belief of actor-1 that actor-2 is going to deliver the correct service based on previous
interactions of other actors. The Reputation Index can be calculated from the Trust that other actors
(apart from actor-1) have on actor-2. In other words, this metric determines the belief of others on an
actor and is useful especially when actor-1 does not have enough data to extract a Trust Index for actor-2
(because e.g. there are no interactions between the two actors yet).

o Reliability (R’): An absolute indicator of the performance of the actor that quantifies its efficiency to offer
successfully its services relatively to its ideal or normal operation. The Reliability Index should be based
on criteria like: response time upon request, ability to communicate, quality of service provided, etc.

¢ Dependability (D): A social measure combining all the above social measures. It can be simply derived by
the expressionD =a-T+b-R+c-R +d-P where a, b, c and d (non-negative integers) are the
weights of the measures anda + b + ¢ + d = 1. For this calculation, Popularity has to get normalized.
By selecting the appropriate weights, we can provide the expression of the Dependability Index that we

want. For example, when there are only a few interactions between actor-1 and actor-2, then the Trust
Index should have a low weight and the Reputation Index should have a high weight. This means that the
weights should change dynamically and be set according to the users or developers’ preferences.

General Features

Reputation connects closely to the concept of Trust, but there is a clear difference, which can be illustrated
by the following two scenarios:

e Actor-1 trusts actor-2 because Actor-2 has a good Reputation. This reflects that Reputation can be used
to build Trust.

e Actor-1 trusts actor-2 despite the bad Reputation of Actor-2. This reflects that even if actor-1 knows the
Reputation of actor-2, actor-1 has its own private knowledge (e.g. direct experience with actor-2) which
is considered to be more important.

Generally, an actor can be evaluated only by information gathered from other actors. Its Dependability can
be calculated by each and every other actor of the community (a subjective estimation) or by the whole
system (a more, but not totally, objective estimation). Both big and small time-windows are used to quickly

61

detect malicious or unsatisfactory behaviour and avoid the fast redemption of blacklisted actors. Moreover,
feedback from recent interactions has a higher weight than this of older actions.

Benevolent actors should have more opportunities than newcomers. As a result, newcomers with 0
interactions with other actors will have Reputation equal to 0. However, an extra rule has to be applied to
the model we have designed to give the opportunity to newcomers that have a low Reputation (because of
the small number of interactions with other actors) to be chosen as service providers at some point and start
building their Reputation. For example, 10% of the recommendations from the platform should introduce
newcomers to the rest of the community. The same applies for actors which have low Reputation due to
malicious or unsatisfactory behaviour in the past. In other words, this rule enables the social integration and
reintegration of the actors to the system. Moreover, this rule is necessary for the first moments of the social
community that may be born from M-Sec, as the network, at its initial state, will not have any actors with
high Reputation.

It should be noted that, in contrast with many T&R models, we choose to use different Trust and Reputation
scores for different services provided by the members of the network. This feature helps as face quite many
security threats. For example, abuse of a high achieved Reputation is easily avoided.

Calculation of Trust & Reputation

In M-Sec T&RM, only the idea of subjective Trust is modelled, as we claim that subjectiveness is embedded
in Trust’s meaning. Strong Trust on an actor cannot and should not be affected by claims of a third party. In
order to model Trust, the experiences based on which the Trust is calculated need to be modelled. Thus, we

need memory. For that purpose, the M-Sec Blockchain can be used to store the “social” interactions
between actors and the evaluations of the corresponding services. Some crucial attributes that have to be

stored in these Log Files are:

e Satisfaction (s): This value is essentially a subjective QoS indicator. The Satisfaction is automatically
derived by the absolute values of the service based on their correctness. For example, a sensor that
suddenly reports a really high temperature will be assigned a satisfaction rating based on the correctness
of this report. If there is a fire, the Satisfaction is high, but if the is not, the Satisfaction is zero. Since an
actor that regulates the alarms can consult more than one sensors, a malicious or faulty sensor will
quickly lose any trust. If the sensor is fixed, the Social Reintegration part of the system will allow it to
build trust again.

e Weight (w): This is a value indicating how crucial the service is for the well-being of the actor. It is used in
order to prevent a malicious actor from providing a minor service well and then exploiting the built Trust
and providing a crucial service poorly. Due to this value, it is difficult for the Trust index to increase just
because of minor services, whereas it can drop quickly in case of a crucial service with low quality.

¢ Fading factor (f): When new interactions take place, the importance of older ones should decrease. The
fading factor addresses this issue and forces peers to stay consistent with their previous behaviour. Old
interactions have lower fading factor values, so an actor cannot misbehave relying on its good history.
The fading factor makes the Social Reintegration of ex-malicious nodes possible, meaning that if they
become benevolent, it is possible for them to get a second chance and form new ties with the network.
Of course multiple incidents of misbehaviour can get an actor permanently black-listed. This fading factor
can be set by the system administrator so that the actors take under consideration the last N interactions
with any other actor.

62

When an actor wants to calculate the Trust Index of another one, it looks into the appropriate Log Files in
the Blockchain and calculates the trust value as the weighted average of the log entries using:
N
e 2i=1(Siwit fy)
t

=== &

where W is the normalization co-efficient which ensures that the trust value will be between [0,1] and is
calculated by:

U

N
w=) wf) @

The mean value (W) is a measure of the overall observed behaviour of the actor and indicates the expected
satisfaction value of the next interaction. However, it is needed to know how confident we can be about the
value of p i.e. how much the satisfaction from the service may actually deviate from . Thus, the standard
deviation (o) of the behaviour is also calculated. To reduce the computational overhead, the calculation of
the later occurs simultaneously with the calculation of the mean value following the formula:

AP)W (B f0)
.

= 3

Finally, we define Trust as:
T = pi —of (@

To sum up, u shows the satisfaction that actor-1 should expect from actor-2, while o shows how predictable
the behaviour of actor-2 is. This means that if T = 0.5 then there is an 84% probability that the satisfaction
for the service will be 0.5 or greater. That way the service providers that are not consistent and have an ever
changing and oscillating behaviour will have lower Trust indexes even if their i value is higher.

AN AN

B4%

L J

Figure 33: Calculation of the Trust Index of an actor

Similar approach is being followed to calculate the , although this metric needs to extract
more interactions logs from the Blockchain.

63

TRMSim-WSN

In order to test our T&R model, we used TRMSim-WSN*®, a simulator for T&R models. The TRMSim-WSN is a
Java-based T&R models simulator aiming to provide an easy way to test a trust and/or reputation model
over WSNs and to compare it against other models.

The TRMSIim-WSN is, as far as we know, the state-of-the-art simulation platform for confidence-renowned
systems. It is aimed at simulating algorithms for reputation and trust management in WSN systems, but the
same principles can apply to loT systems in general. The simulation can be run over a single randomly
generated WSN or over a set of networks. The user is able to define parameters of the network, such as the
percentage of clients and that of malicious nodes. Network topologies may also be loaded from and saved to
XML files. Sample trust and reputation models have been included and an APl is offered which provides a
template for the users to help them easily load new T&R models to the simulator®. For the tests, parameters
that can be configured are: number of executions, number of random networks to be tested, % of Malicious
Actors, Collusion between Malicious

Actors, Oscillating behaviour of actors, =

TRMSIim-WSN 0.4 Trust & Reputation Models Simulator for Wireless Sensor Networks -

WSN Simulations Parameters Help

etc.

T&R model
compared it with three predominant
(as of today) T&R models (Eigentrust,
PeerTrust and PowerTrust) as well as

To evaluate our we

with a relatively new system known as
BTRM (Bio
Reputation Model) that applies a

-Inspired Trust and

biological algorithm known as Ant-
Colony System.

Simulations | Parameters |

[ewwsn

Run T&R Model Legend

Reset WS

Client

Benevolent

[_seowst

Load WSN

Run Simulations

Num executions
100=

@ Relay
®idie

% Clients

Num notworks

1001
Min Num Sensors

50—

Max Num Sensors

1001
[] Show ranges
|v| Show links

[] Showids

Outcomes

=i

% Relay Servers
_—
% Malicious Servers

Radio Range
_

Delay

[¥] Dynamic WSNs

[] Oscillating WsNs

[l collusion

Trust & Reputation Model
BTRM_WSN -

[Accuracy | Path Length

Energy Consumption

@ Malicious

80+

60+

40+

0+

Current 88.16 %

— Average 855 %

Messages

[Finihing simulations at Mon Apr 20 21:19:19 EEST 2015.
Running BT

Figure 34: TRMSim-WSN.

We run simulations both in simple networks and in networks with dynamic entry or oscillating behaviour of
actors. Measurements of the average satisfaction were made at various percentages of malicious actors
(10%, 50% and 90%). The results are given in the next figure.

40 F, G. Marmol and G. M. Perez, “TRMSim-WSN, Trust and Reputation Models Simulator for Wireless Sensor Networks”
41 F. G. Marmol, “lImplementing and Integrating a new Trust and/or Reputation Model in TRMSim-WSN”

64

NORMAL NETWORK COMPARISON

B EigenTrust
B PeerTrust
PowerTrust
B BTRM-WSN
B M-Sec T&RM
50% ; 7

0%
MALICIOUS NODES %

99.60%

98.40%

SATISFACTIONIH{ %)

Figure 35: Normal Network Comparison

From the above, it can be seen that our models performance is comparable to that of the over models (and
in some cases better).

During Y2, the simulations for our T&R model continued, focused not only on the average satisfaction
metric, but also on other important characteristics, such as scalability of the system. Once this level is
completed, depending on the results, the model will be implemented as a mechanism on top of the M-Sec
Blockchain and Marketplace and be tested accordingly.

65

Application Level Security

Since it is necessary that sensitive data stored has to be secured and private, the crypto companion database
(CCDB) is proposed as a parallel system to the blockchain for the encrypted storage. The blockchain will save
a hash created from the sensitive data, and the CCDB will store the sensitive data encrypted together with
the hash. The hash will be used to have a connection between the transaction in the blockchain and the data
stored in the database.

Blockchain The CCDB will encrypt the data with an

0 @location #L1
#B1

1 asymmetric public/private key pair.

_.y[ccoam This data could only be accessed by the
ccoe [“_ owner, which will have to be

AP
x RRIN authenticated, and the authorized
hash: aes001 e Crypto
Iocation: #1.2 . Module operators allowed by the owner. The
Sl L’ (IS g authorization is not a part of the CCBD as
\‘H- '
.~ , - . -
= . el L @location #L2 o it will be carried by the Blockchain itself,
Rt so the component will ask the Blockchain
hash: abc002 # s — .
location: #L3 . el for it.
. Sal 2y CCDB #2
- R A ccos b7 o
:-\ = With this database insertion, deletion and
r ' - I -
e . ¥ ~ consultation of the information will be
hash: cha003 e P Crypto . e . .
ey . L’ Module possible. The modification process will be
PR, f& 2 bit more complex, as the hash that holds
- #
j P @location #L3 the link between the blockchain and the
#B4) P prem—— —
L’ .. (database will change if the information
hash: ptr004 -, ~ — . cpe . . .
location: #.3 ~ ~ - _ _ .’ e changes. So if a modification is needed, it
ERRREED N ~FSEER il be done by deleting the old
: f" Teeeceme 7T Wi e done by deleting the o
e .’ Bt information and inserting the new one.
h"'\l‘L
hash: npi005 Crypto . . .
location: #1.2 Module Each application in the ecosystem can

—— f8 have its own crypto companion database;
| therefore data will always be distributed.
. L. In order to make it accessible and
Figure 36: Access to distributed data. .) .
replicated if wanted, the key pair can be
replicated on any system by providing the 24-word mnemonic. To reduce the amount of data held by a

single database, the location of specific information can be stated in the blockchain transaction.

66

The components used to create the CCDB are the following:
- Crypto Module
- Companion DB Module

The evolution of the Companion DB Module with the Crypto Module makes a secured database, as the data
will be encrypted by an asymmetric key pair, so it will be called Crypto Companion DB.

The Crypto Module will be used independently on any type of database (currently only supports MongoDB)
and in any software because it provides an API to encrypt/decrypt data. The API of this module is designed
as a private APl with no access to the Internet, so it does not provide any security.

The Companion DB Module has a public API that can be used to save, delete and query data. It also provides
an authentication layer in order to secure the users that access the data. This module also provides an
authorization layer in order to know if the owner of the data allows an operator or external user to see it.
This authorization layer will make use of the Smart Contracts on Blockchain described in Deliverable 4.5
section 2. Demonstration 1: Blockchain Framework and Middleware Services.

X

Client

Crypto Companion DB Module

-

WalliAPP Companion DB Module Crypto Module
I — N [N

&I}

BocThain Companion API » Crypto APl —— Kaystore

- //' \"l 5

Operator

Figure 37. Crypto Companion Database Module components.

Crypto Module
This module allows a user to encrypt and decrypt data. It has two components:

e The Crypto API, that is in charge of encryption and decryption of the data with the keys stored in the
KeyStore DB.

e The KeyStore DB, that is a MongoDB that holds the key pairs to encrypt and decrypt data by the
users.

The Crypto API provides the following methods.

67

A method to create an asymmetric key pair:

oEiE /erypto/enrol/{hash}

The creation of a public/private key pair can be made by scratch or by providing a 24-word
mnemonic, allowing replicating the keys in other applications. It will be useful if the user wants to
authorize always with the same public/private key, and also will allow a distributed system to be
able to decrypt data in a distributed way.

Crypto Module - Enrolment

Crypto API
ypio KeyStore DB
- -

enrol(hash: clientld, mnemonic)

alt J | [mnemonic NOT null]

generateKeysByMnemonic{mnemonic)

publicKey:privateKey
]

[mnemonic null]

generateKeys()

mnemonic:publicKey:privatekey

save(hash,publicKey, privateKey)

boolean

mnemonic

T T

Figure 38. Sequence diagram. Enrolment in Crypto Module.

68

A method to encrypt data:
GET /crypto/encrypt/{hash}

This endpoint will take the private key of the user with the hash provided, and encrypt the string
with the data in the payload.

Crypto Module - Encrypt Data

Crypto API
ypio KeyStore DB
L |

encryptData(hash, data)

getPublicKey(hash)

publicKey

encryptedData

encryptedData

Figure 39. Sequence diagram. Data encryption in Crypto Module.

69

A method to decrypt data:

GET /crypto/decrypt/{hash}

This endpoint will take the private key of the user with the hash provided, and decrypt the string

with the data in the payload.

Crypto Module - Decrypt Data

Crypto API

decryptData(hash, data)

decryptedData

-

getPrivateKey(hash)

Figure 40. Sequence diagram. Data decryption in Crypto Module.

privateKey

decryptedData

KeyStore DB

70

o A method to delete the keys:

‘ /crypto/disenrol/{hash}

This endpoint will delete the public/private keys associated with the hash provided.

Crypto Module - Disenrolment

Crypto AFI
T

KeyStore DB
1

disenrol(hash: clientld)

deleteKeys(hash) >

boolean

Figure 41. Sequence diagram. Disenrolment in Crypto Module.

The API of this module is intended to be private, so it does not provide any kind of security.

The KeyStore DB will store the public and private keys created by the Crypto API with a hash that will act as
an identifier.

So the data stored in the database will look like:
e hash: 32-64 hexadecimal string.
e Public key: The Public key generated by an asymmetric key algorithm that matches the private key.

e Private key: The Private key generated by an asymmetric key algorithm that matches the public key.

71

Crypto Companion DB Module
This module allows a user to have an authentication system and save the encrypted data. It also provides
other users with the possibility to read data from a user if authorized.

This module has two components:

e The Companion API, is in charge of authentication and managing all the data providing methods to
save, read and delete data in the Companion DB.

e The Companion DB, is a MongoDB that stores the encrypted data.
The Companion DB API provides the following methods.

Authentication API

e A set of methods to register, update user information and recover a password.

POST /auth/login

POST /auth/token/refresh a

GET /auth/logout a

POST /auth/user/register

GET /auth/user/me a

POST /auth/user/update a

POST /auth/user/remember

GET /auth/password/reset

POST /auth/password/update

Figure 42. Authentication API in Crypto Companion Database Module.

e A method to register:

POST Jauth/user/register

The registration of a user will also trigger the enrolment on the Crypto Module, so the keys will be
created during the registration.

72

®

Data Management API

e A methodto enrol:

mJ

Sl /companionDB/enrol a

The creation of the
public/private key pair can
be made by scratch or by
providing a 24-word

CCDB Module - Enrolment

. . CCDB API Crypto API
mnemonic, allowing Client APP/Wallet P
1 1 -

replicating the keys in
other applications. It will enrol(clientld, mnemonic) >

be useful if the user wants

enrol(hash: clientld, mnemonic)

to authorize always with
the same public/private boolean
key, and also will allow a

L boolean
distributed system to be q--------------1
able to decrypt data in a

distributed way.
Figure 45: Sequence diagram. Enrolment in CCDB Module.

e A method to disenroll:

{ DN /companionDB/disenrol a

This endpoint will delete all data associated with the user along with its public/private keys.

CCDB Module - Disenrolment

CCDB API Crypto API
Client APP/Wallet Companion DB A
L - -

|

I

disenroll(clientld, boolRemoveData) |
>

!

t

e

opt

[boolRemoveData]

deleteBulk(clientld)

boolean

disenroll(hash: ciientld)
T

boolean |

q--------20F0 F-------1
|
|
|
|
|

boolean

Figure 46: Sequence diagram. Disenrollment in CCDB Module.

73

A method to read data:

=l /companionDB/read/bulk

GET /companionDB/read/{dataId}

These endpoints will let an owner or an authorized user to read the encrypted data.

CCDB - Read Data

CCDB API Ci API
Operator APP Blockchain Companion DB rypto
| A | I
| | |
ion purposes | | |
| | |
readBlock(clientld) : :
| | |
dataHash | |
Ittt aieks (alliee e | |
} —+ | |
| | | |
getData(operatorld, clientld, dataHash) _ | | | |
d | |
getData(dataHash) ! - !
! > |
| |
data: encryptedData | |
ittt r-———""" |
| |
| |
| |
hasAuthorization{operatorld, clientld) | |
| |
. _SAutonzed } :
] |
opt [isAuthorized] | |
! !
decryptData(hash: chientld, operatorld, encryptedData) o
T T Ladl
| |
data: decryptedData
R B TTTT
hashData(data) : : |
< | | |
| | |
dataHashDecrypted | | |
----- 1
L lg---- | | |
| | |
validateHash(dataHash, dataHashDecrypted) : : :
< | | |
| | |
boolean | | |
----- I
L lg---: | | |
| | |
T T I

Figure 43. Sequence diagram. Read data in CCDB Module.

74

A method to save data:

‘ POST /companionDB/save

‘ POST /companionDB/save/bulk

This endpoint will let an owner to save encrypted data.

CCDB Module - Save Data

CCDB API Crypto API
Client APP/Wallet Blockehain Companicn DB A
| - I I
I I
Out of scope, illustration purposes only | |
I I
sendlransaction(clientld, data, ...) | } }
>

I I
dataHash | |
Db ! !
f I I
_ | I I
saveData(clientld, dataHash, data) o | |
| v I I
| hashData(data) | |
| < I I
| I I
| hash | |
I | lg--2. \ !
| « I I
: validateHash(dataHash, hash) } }
| < I I
| I I
| | _b_oglean | |

| L - |

| I

: encryptData(hash: clientld, data)

T

| a0 I

: 4.-_____---__--PECEVEL‘E_Q“"_‘_---‘L
| | I
| I
: saveData(clientld, dataHash, encryptedData) | }
>

| I
| boolean I
| Dttt |
| I
. boolean e ! !
| I I
L | || I I
| I I

Figure 44. Sequence Diagram. Save data in CCDB Module.

75

e A method to delete data:

‘ DELETE /companionDB/delete/{datald}

‘ /SN /companionDB/delete/bulk

This endpoint will let the owner of the data to delete it.
CCDB Module - Delete Data

CCDB API
Client APP/Wallet Companion DB
L

I
| |
deleteData(clientld, dataHash) | |

[
Lag

deleteData(dataHash) |
Ll
boolean

boolean

Figure 45. Sequence Diagram. Delete data in CCDB Module.

e A method to authorize a user:

‘ POST /companionDB/authorise/{hash}

This endpoint will let an owner to authorize another user to decrypt its data.

CCDB Module - Authorise

% CCDB AFI

Client APP/\Wallet Blockchain
L - L

authorise{operatorld, operatorld)

call("AUTHORISE", operatorld) >

boolean

Figure 46. Sequence diagram. Authorize in CCDB Module.

e A method to deauthorize a user:

‘ D]JN 8 /companionDB/deauthorise/{hash}

This endpoint will let an owner to deauthorize another user to decrypt its data.

Client APP/Wallet

L

CCDB Module - Deauthorise

CCDB API

deauthorise(operatorld, operatorld)

Figure 47. Sequence diagram. Deauthorise in CCDB Module.

call("DEAUTHORISE", operatorld) »

Blockchain

L

boolean

boolean

e A method to request authorization to a user:

‘ /companionDB/requestAuthorisation/{hash}

@ |

This endpoint will let an external user to request authorization to access data to the owner.

Operator APP

CCDB Module - Request Authorisation

CCDB API

requestAuthorisation(operatorld, clientld, dataHash) |

Figure 48. Sequence diagram. Request authorization in CCDB Module.

Ll

Client APP/Wallet

clientld::push("REQUEST_AUTHORISATION", operatorld)

|
|
|
|
!
>
|
|
|

77

The following section provides a list of the tools and dependencies needed for the correct operation of the
crypto companion database. It also provides a set of steps to install them as well as the demonstration itself.
All installation processes have been taken from the official websites of the products and modified according
to the needs of the demonstrator.

Required Tools and dependencies
The Following is the list of the required tools and dependencies of the modules:

e Docker (it comes with, Kubernetes, Kitematic, Docker Manager, ...)
e Docker Quickstart Terminal

e Docker Toolbox (for Windows Users only)

e Mongo DB

e Oracle VM Virtualbox

e Nodejsv10.17.0

e NPM6.11.3

o Git

The version indicated in some tools/dependencies are important for compatibility. If the versions are not
these, it might raise a problem.

In order to ease the installation, proceed with the established order in the list.

Install Docker
The installation can be found in the Docker’s webpage

Install Mongo DB
As docker has been installed in the section above, the installation of the Mongo DB will be as easy as
executing the following command for any operating system:

docker run -p 27017:27017 --name mongo-nest -d mongo:4

Install Node.js and npm
The installation of these two tools is done together, and it can be found in the Node.js webpage

Install Git
Extracted from

Download and Run the Demonstrator
In order to download and run the demonstrator, the following steps have to be performed:

1. Clone the GitHub project in a selected folder:

78

https://docs.docker.com/v17.09/engine/installation/
https://nodejs.org/en/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/jordiescudero/wl-bc-cs/

2. Execute the command from the installation of Mongo DB:

|docker start mongo-nest

3. Goto the root of the project:

npm run start

4. The base URI for all the interface will be: http://localhost:3000/api/
5. The Swagger Ul can be found at: http://localhost:3000/api/docs/#/

User Manual
As stated in the section “Companion DB Module” the APls that will be published and used will be the
following.

e Authentication API

POST Jauth/login

POST /auth/token/refresh a

GET /auth/logout a

POST Jauth/user/register

GET Jauth/user/me a

POST /auth/user/update a

POST /auth/user/remember

GET /auth/password/reset

POST /auth/password/update

Figure 49. Authentication API in Crypto Companion Database Module.

79

http://localhost:3000/api/
http://localhost:3000/api/docs/#/

Data Management API

POST

/companionDB/enrol

DELETE

/companionDB/disenrol

GET

/companionDB/read/bulk

GET

/companionDB/read/{datald}

POST

/companionDB/save

POST

/companionDB/save/bulk

DS NS IS /companionDB/delete/{datald} a

(DS NI /companionDB/delete/bulk a

POST /companionDB/authorise/{hash} a

(D]INJI /companionDB/deauthorise/{hash} a

POST /companionDB/requestAuthorisation/{hash} a

Figure 50. Management API in Crypto Companion Database Module.

The Swagger Ul provides enough information to let the developer know how to use this API.

Licensing
Licensing for all the components/software used:

e Docker is under Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0) form more

detail go to https://www.docker.com/legal/components-licenses.

e Mongo DB is under Server Side Public License (https://www.mongodb.com/licensing/server-side-

public-license)
e NPMis under Artistic License 2.0 (https://www.npmis.com/policies/npm-license)

e Gitis under GNU General Public License version 2.0 (https://opensource.org/licenses/GPL-2.0)

e Oracle VirtualBox is under GNU General Public License, version 2 (https://www.gnu.org/licenses/old-

licenses/gpl-2.0.html)
e Software developed is under MIT (https://github.com/jordiescudero/wl-bc-cs/blob/master/LICENSE)

80

®

https://www.apache.org/licenses/LICENSE-2.0
https://www.docker.com/legal/components-licenses
https://www.mongodb.com/licensing/server-side-public-license
https://www.mongodb.com/licensing/server-side-public-license
https://www.npmjs.com/policies/npm-license
https://opensource.org/licenses/GPL-2.0
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://github.com/jordiescudero/wl-bc-cs/blob/master/LICENSE

1.10 Demonstration 2 — Security-analysis-tool

It is crucial for secure software development to use various types of security knowledge. NIl provides
security requirements modelling support system (Security analysis tool) for a misuse case diagram that
enables the association of security knowledge with elements that constitute the diagram.

The functions provided by the Security analysis tool are the following.

1. todraw diagrams

2. to associate security knowledge with elements of a diagram
3. to browse security knowledge in the knowledge base

4. review function

5. artifact management

The following diagram shows an overall screenshot of the Security Analysis Tool.

Knowledge retrieval

AP v g

Loy
dtin srce [
e MITM NG
P 120 -4 Brute force attack u
sctot}—
#87% Dictionary attack - Mformation .
Ll J120-+18 Password conjecture _Jdisclosure .
2731477 Session hijacking . ﬁ, s | "\Spoofing
= ples
. In ormation User info, e\
oLy disclosure N | IS EPPZYH
\ -
S |\ SQL injection
Register user info.
engles T -
T i sroats
NG
N ~
Y ™~ \
nchdns [s)
- g S
IncTfs S~
Refer cache N ~~
sefudes % [TN \
[\
pan i proets s Access control server
:] S 27~
" P —
y i L Architectures = Authentication
. e Y
BRE gt 477208t e
i R pr—_ g g »
Misuse Pattern N " e Invalidate cache [AoRs| Elevation of privil
——— e o sy levation of privilege Elevation of privilege
- T amn v
o s

Knowledge base browser

MITM

Diagram editor

Figure 51. Screenshot of the Security analysis tool.

On the right side of this figure is an editor that creates a misuse case diagram. The lower left side of this
figure represents the entire structure of the knowledge base. When a node is selected, the detailed
information regarding the knowledge is shown in a sub-window.

81

Software Security Knowledge Base

Software security knowledge base consists of several knowledge catalogues as follows:

Principle is a statement of general security wisdom derived from experience.

Attack pattern is developed by reasoning over large sets of software exploits.

Guideline is a recommendation for things to do or to avoid during software development, described
at the semantic level.

Rule is a recommendation for things to do or to avoid during software development, described at
the syntactic level.

Vulnerability is the result of an analysis against a software that an attacker can use to gain illegal
access to — or negatively affect the security of —a computer system.

Exploit is a particular instance of an attack on a computer system that leverages a specific
vulnerability or set of vulnerabilities.

A historical risk is a risk identified in the course of an actual software development effort.
Process/Methodology/Standard is a process, methodology, or standard regarding the development
of secure software.

Component is an element that consists of the aforementioned process, methodology, or standard.
For example, the CLASP process consists of “Activity,” and/or “Sub-activity”.

Security pattern is a solution to the recurring problem for security.

Software security knowledge base forms a highly complex graph structure, in which knowledge is

represented by links. The knowledge base is visually represented in Figure 52. There are fourteen types of

knowledge, and knowledge instances are identified by colours allocated to each knowledge type. When a

node (knowledge instance) is selected, the detailed information is shown as in the bottom right side of

Figure 53.

82

Assedis §RL

Aot ygsed

Idenf fguse:

DOetail gysus

Document sec

Wentify st~

Identify do

1dentifyres

Specfycper

Annchafe clu

Imnlamant an '

affect ']_I

Attack pattern Exploit

depefidente iti 3 i
F } s, iti
y(gﬁepenae relate
Process itigate/, | Security pattern

G| o
}? " i /'g iZepdndbne
c -

omponent * | Principle Guideline Vulnerability [Historical risk
i * *
similar > ’l
Rule
Solution type Solution(countermeasure) Security policy Security goal
[

[

Figure 52. Conceptual model of software security knowledge.

Vi gl
e gooes™
Bdrackthre
Assessfhres
Exts
Determge oo .
m;‘t’j Pesrgiso™ ingasgollectiont
sophppevehi Amlmgtjcali0|1 exploitation Singe fiooes™
Extend gise A Passwaitk evitjecture
Ideldiibls Blevation of privilege
77~k Tdeiity spoafing Phishing.. _ Physicabthet
A,‘" .._;-1":, Uiz s 5, ok~
i Dictionary-based password attacky
Descrig is™ Brafe-foroettack: 5t A Insidegiire ™
ey et Sessionhijickig 3" Biag
Evdlustg res- PRl WM
Fre o
oot O gt | Attack pattem
Explafy Ses S iBHiEGRCe at
Determine ri i CHon)
Resoledefi ©logyee “’"""'"‘uax',n... Attack patierr.: Di¢tionary-based password attack
\denttg sy Bessionel Author
,::: ,';f,::. iLink https//capec mitrs org/data/definitions/16 htm
(6) Cantent . ;-
Build aglobee s TR QOdfz’pm it operatio Soifrce CAPEC
Determge su
Idenitynet SQLsinjectio Attack
Menfifydat- DOSHIK ey T Eneineering Patter ID 4
Idenfifygreq Pattem name
Identifgreq- and Dictionary=nased Password Attack, Spoof ing
Refine st Croﬂ' B Codkivsl ..S“ @ CCa classification
e o ek
Design harde' M = i prerequistes An artacker tries each of the words in a dictionary as
s B Dogue: ossvords o g
»Jmp fien Descrigtion sdecount. I the passivord cho
Moozt O e & within the dictionary. this atiac
R absence of other r'nil'ignionsh. Thisisa specific instance of
Targeted the password brute forcing attack pattemn.

Figure 53. Visualized software security knowledge base.

83

We describe the operations for registering knowledge in the software security knowledge base system and
associating the registered knowledge.

For example, we create “Spoofing” information in Threat Type knowledge catalogue: “Microsoft STRIDE”.
And we create “Identity Spoofing” in “Attack Pattern” knowledge catalogue: “Common Attack Pattern
Enumeration and Classification (CAPEC)” in the same way. We associate “Spoofing” information in Threat
Type knowledge with “ldentify Spoofing” in Attack Pattern knowledge.

1. At first, select “Threat Type” in the Top page of Software Security Knowledge Base.

SecurityKnowledge

Software Security Knowledge Base

l—lThml — affect r\ !
Attack pattern Exploit
| — 1 %o—% E

relate

l Vulnerability Ll' Historical risk]
I 1t 1
! 1L 1

Solution type Solution(countermeasure) Security policy I Security goal I
: [nF i |
« L /| 1] L 1

 —

Figure 54. Top page of Software Security Knowledge Base system

2. Click “create” button and fill the Spoofing information on the registration form.

Threat Type

Creating new Knowledge!

Please create new Knowledge. If you create new knowledge , you will be of help to many people.

create

Threat Type List
See Threat Type List and select Knowledge Then,you can see information of knowledge and update column of knowledge.

s FEmE~ D B

Figure 55. Threat Type Screen

84

SecurityKnowledge

Threat Type

Spoofing

01— —DORIEWNR (1——B. NRT—FRE) KRELFI72AL, ThEERTIOMRETY

create

Figure 56. Threat Type registration form

3. Next, create “Attack pattern” knowledge in the same way.

CLWELWEE | £7151498.ngrok.io;

SecurityKnowledge

Attack Pattern

Figure 57. Registered Identify Spoofing in Attack Pattern knowledge

4. At last, we associate Threat Type knowledge with Attack pattern knowledge.

1) Select “Spoofing” from Threat Type List and Click “update” button.

85

SecurityKnowledge

Threat Type

update back

Figure 58. Spoofing information in Threat Type Screen

2) Chose “Identify Spoofing” from pull-down menu.

Threat Type

g

fap1—H—ORIAER (21— -8B, NAT—FABE) ERELFIEAL. ThEeEBRTTRRETT

+ Identify Spoofing _

create

Figure 59. Edit form in Threat Type screen

3) “Spoofing” in Threat Type knowledge is associated with “Identity Spoofing” in Attack pattern
knowledge.

86

€« cC o @

SecurityKnowledge

Threat Type

HEE HENEABE

Identify Spoofing

update back

Figure 60. Association of Treat Type knowledge “Spoofing” and Attack pattern knowledge “Identity Spoofing”

Installation Instructions

The following section provides a list of the tools and dependencies for the correct operation of the Security
analysis tool.

Required Tools and dependencies
The following tools and dependencies are required to use Security analysis tool:

The security analysis tool is under development and subject to change the following tools and dependencies.

e Docker
e MySQL

Install Docker

The installation can be found in the Docker’s webpage https://docs.docker.com/v17.09/engine/installation/,
but in the section “Install Docker” in the “Crypto Companion Database (CCDB) ” there is a list of the main
steps and commands for Windows and Ubuntu.

Install MySQL
The installation can be found very detailed in MySQL’s webpage.

For Windows: https://dev.mysal.com/doc/mysql-installation-excerpt/5.5/en/windows-

installation.html

For Linux: https://dev.mysgl.com/doc/mysgl-installation-excerpt/5.5/en/linux-installation.html

Download and Run Demonstrator
The security analysis tool is under development and it is not currently available to download and run.

87

https://docs.docker.com/v17.09/engine/installation/
https://dev.mysql.com/doc/mysql-installation-excerpt/5.5/en/windows-installation.html
https://dev.mysql.com/doc/mysql-installation-excerpt/5.5/en/windows-installation.html
https://dev.mysql.com/doc/mysql-installation-excerpt/5.5/en/linux-installation.html

A step-by-step guide will be provided after the Security analysis tool is completed.

User Manual
The security analysis tool is under development and some of its functionalities may change in the near
future, so a user manual is not provided yet.

The user manual will be provided after the Security analysis tool is completed.

Licensing
Licensing for all the components/software used:

e Docker is under Apache License 2.0 () form more
detail, go to
e MySQL (GPL) is under GNU General Public License version 2.0 (
)

88

https://www.apache.org/licenses/LICENSE-2.0
https://www.docker.com/legal/components-licenses
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/GPL-2.0

End-to-End Security

1.11 Security Manager

General Description

The security Manager is a set of centralized security functions that are necessary to ensure end-to-end
security, privacy and therefore digital trust. It is designed to support several security functionalities
aggregated in a single backend using the LDAP standard, as described in Figure 61.

OpenSSH E’ Smartphone
apps
OpenSSL Linux Postfix REST APls Web
browsers

LDAP

engines Systems apps

PAM SASL

OAuth2 OpenlID
Keycloak

Figure 61. Stack for the M-Sec "Security Manager" with components described in blue

In terms of M-Sec implementation, this security manager is planned to be integrated into the project as

follows:

- Within loT devices in T4.1 for provisioning devices with initial manufacturer credential for firmware

authentication

- InT4.2 between loT devices and the cloud for communication authentication and encryption. This is

most likely an encrypted channel between loT devices and M-Sec middleware such as SOXFire and
sensiNact. The initial steps of this integration are described in the next demonstrators.
- In T4.3 to provide marketplace authentication and authentication coordination between

SOXFire/sensiNact and the blockchain implementation

- Inapplications within T4.4 in order to authenticate end-users in the system.

89

Directory service

The central element for the security manager is a directory service containing all information to manage
security services for clients, such services known as AAA for Authentication, Accounting and Authorization. In
the implementation form, we use an LDAP directory as it is commonly accepted as a free and open standard
from the IETF.

v & oo
w /] Root DSE (2)
v (@ dc=msecproject,dc=eu (17)

w |] cn=accounts (9)
cn=computers (1)
cn=cosTemplates
cn=groups
cn=hostgroups
Cn=ipservices
cn=roles
Cn=sernvices

cn=users (1)

oo

CN=VIEWS
cn=alt
cn=autemount
cn=ca (3)
cn=certrap (1)
cn=etc
cn=hbac
cn=kerberos
cn=otp
cn=phac
cn=provisicning
cn=radiusproxy
cn=selinux
cn=zudo
cn=trusts
cu=profile

e 0OOOOOOOODOODDE

ou=sudoers
Figure 62. The first level of the directory service for the security manager

Public Key Infrastructure

Public key infrastructure is an essential component in modern communication patterns enabling asymmetric
cryptography between untrusted parties. A public key infrastructure enables to bound public keys to
identities (such as people or devices). It is usually managed by an authority associated with many roles such
as validation authority, registering authority, etc.

We use the dogtag PKI solution, which has native capabilities to use LDAP as described earlier.

90

The demonstration in this first version aims to show how a client can talk to an endpoint with a secure
channel managed by the Security Manager. It handles the configuration of the security manager, the
enrolment of the user and the configuration of the endpoint.

Required Tools and dependencies

We assume that all three entities, the security manager, the client and the endpoint are running a Linux
Operating System. In the demonstration, the client is a Raspberry Pi, the endpoint and the security manager
are both virtual machines.

DNS

One of the first steps is to have a proper DNS configuration, even if services are running locally. To reflect
this configuration, we force the name resolution in the /etc/hosts file as follows:

10.255.0.242 manager.msecproject.eu
10.255.2.168 client.msecproject.eu
10.255.2.150 endpoint.msecproject.eu

It is important for the security manager that these entries are placed at the very beginning of the file as only
the first resolution is taken into account while resolving certificates domains.

FreelPA

We use the FreelPA toolkit which integrates many components, yet to be configured, such as an LDAP
server, the dogtag PKI and Kerberos system. FreelPA is available as a package on most Linux distributions. An
installation script provides an interactive configuration tool.

apt-get install freeipa-server
/usr/sbin/ipa-server-install

Note that FreelPA is not yet fully supported on Debian-based targets and require unstable packages (sid).
Installation is most likely to fail and require few tweaks.

More information about installing FreelPA is available at the following link:

Download and Run Demonstrator

The demonstrator shall be composed of three distinct machines: a device (Linux based), an loT backend and
the Security Manager. We describe here steps to deploy the security information. In this setup, we handle
two kinds of flows:

- TLS encryption for HTTP based exchanges (REST)
- SSH tunnels for legacy/third party unencrypted data streams

91

https://www.freeipa.org/page/Quick_Start_Guide

Configuring FreelPA

Once FreelPA has been installed and initialized with the previous steps, one can log into the management
page following the URL https://[domain name filled during installation]. Once logged in, we can manage the

user on the webpage described in Figure 63.

% freelPA

Identity
‘ Users User Groups Hosts Host Groups Netgroups Services Automember ~
h Active users
Stage users S Q Z Refresh | @Delete || +Add || =Disable | | v Enable || Actions v
Preserved users [J = Userlogin First name Last name Status uiD Email address Telephone Number JobTitle
O | admin Administrator + Enabled 890200000

Showing 1to 1 of 1 entries.

& Administrator

Figure 63. Users management page

From this webpage it is possible to add a user or to edit an existing user as described in Figure 64

% freelPA & Administrator
Identity
Users User Groups Hosts Host Groups Netgroups services Automember v
ers » admin
v User: admin
admin is a member of:
Settings User Groups Netgroups Roles HBAC Rules Sudo Rules
CRefresh | DRevert LSave | Actions v
Reset Password
Identity Set « Account Settings
JobTitlg Disable User login admin
Delete
First name Unlock Password Rt
Add OTP Token
Lastname gepyiid auto membership Password 2016-11-01 23:17:222
New Certificate expiration
Full name
uip 890200000
Display name
GID 830200000
Initials
Kerberos principal admin@EXAMPLE. ORG
GECOS Administrator
Kerberos principal [d
Class expiration
Login shell /bin/bash
Home directory home/admin
SSH public keys Add

Figure 64. User edition

We assume that we have a user “demo” for the next steps. The user is just initialized and doesn’t have any

SSH public key or any certificate attached to it.

92

In addition, we initiate a signing certificate authority for SSH. SSH uses its own key system and is not
compatible with a PKI. At the end of this demo, each user will have two public keys: one for SSH and one
bound to the PKI.

To generate an SSH CA, we use the following command which will generate two files: ca.pub as the public
key and ca as the private key. This last key shall be stored in the safest place possible.

ca$ ssh-keygen -t rsa -N '' -C 'admin@msecproject.eu' -f ca

The client is bound to a user in FreelPA. This user in our case is ‘demo’. It will use this account bound to each
outgoing connection, whether it’s an SSH tunnel or a natively encrypted tunnel.

SSH Tunnel for the client

For the SSH tunnel, we need to generate a key with the FreelPA account using the following command.

client$ ssh-keygen -t rsa -N -C 'demo@msecproject.eu’ -f ~/.ssh/id_rsa

Then we can copy the generate file “id_rsa.pub” and copy it to the CA in order for the CA to sign it, making it
trustful for other peers managed by this CA.

ca$ ssh-keygen -s ca -I 'demo@msecproject.eu' -n demo -0 "clear" -0 "permit-port-forwarding"
id_rsa.pub

This command will output a file named “id_rsa-cert.pub” that can be inspected with the following command,
especially to validate some extra options regarding the SSH capabilities (shell, X11 forwarding, etc).

ca$ ssh-keygen -L -f id_rsa-cert.pub

We can then copy back the signed certificate to the client and configure it properly to use this certificate and
to trust the certification authority with the known hosts:

ca$ scp id_rsa-cert.pub client:.ssh/
ca$ echo "@cert-authority * $(cat ca.pub)" > known_hosts
ca$ scp known_hosts gateway:.ssh/

OpenSSL/Certificate management for the client

For other means than SSH, such as TLS tunnels, we can use OpenSSL to interact with the PKI. OpenSSL will
generate a private key with an associated CSR (Certificate Signing Request) that will be sent to the PKI
module of FreelPA. FreelPA will associate the public key to the user and make it available for remote parties.

We first start with the private key and CSR generation on the client using OpenSSL

client$ openssl req -out demo.csr -new -newkey rsa:2048 -nodes -keyout private.key

93

This command will output the private key in the file private.key (which shall be stored in the safest place
possible) and the CSR in file demo.csr, containing the request as well as the public key. The content of the
CSR can then be copied and associated with the user using the web interface as shown in Figure 65 and

Figure 66.

v User: demo

demo is a member of:

Settings User Groups Netgroups Roles HBAC Rules Sudo Rules
ZRefresh || DRevert LSave | Actions -

Reset Password

Identity Sel enave Account Settings
Job Title Disable User login demo
Delete
First name | f Password
Add OTP token
Last name | Rebuild auto membership Password
New Certificate expiration
Full name e T
uio 1849400003
Display name demo demo
GID 1849400003
Initials dd
Principal alias demo@MSECPROJECT.EU | Dele
GECOsS demo demao
Add
Class
Kerberos YYY-MM.
principal
expiration
Login shell /binfsh

https://manager.msecproject.eufipa/ui/#request_cert

Figure 65. web user page for requesting a new certificate

Issue new certificate for user '"demo’

Profile ID

1. Create a certificate database or use an existing one. To create a new database:
certutil -N -d <database path>
2. Create a CSR with subject CN=<uid> 0=<realm>, for example:
certutil -R -d <database path> -a -9 <key size> -5
* CN=demo, 0=MSECPROJECT.EU"
3, Copy and paste the CSR (from ——BEGIN NEW CERTIFICATE REQUEST--- to -——END NEW
CERTIFICATE REQUEST~--) into the text area below:

/IVONdSR+o2RIbe1 AsyTYFntSYboPwOoI3twyVbB: Mu3cH/96C+3pZdm

7MQMY7TIR8 SyTpsFxg05mwyI70IqDc99
BF/eXRi/RTMIQX7acow2gTWY3ntniV0iziHCYUVXr/XPCowHah8UBqDSRASDO

Issue | Cancel

Figure 66. Prompt to insert the CSR while requesting a new certificate

At this stage, the PKI has knowledge about the client but the client is not enrolled within the PKI
enrolment, we need to provide the following command

client$ kinit demo

. To do this

94

SSH configuration

As for the client, the endpoint’s SSH key must be signed by the CA. Assuming that the endpoint is accessible
from the public network with ‘endpoint’ as a hostname, we can use the following command from the CA to
extract the public key and to sign it.

ca$ ssh-keyscan -t rsa endpoint | sed "s/A[~]* //" > endpoint.pub
ca$ ssh-keygen -s ca -h -I endpoint endpoint.pub

The «endpoint-cert.pub« file will be generated and is to move back to the endpoint along with the CA’s
public key

ca$ scp endpoint-cert.pub endpoint:/etc/ssh/
ca$ scp ca.pub endpoint:/etc/ssh/

Then, we need to configure SSH on the endpoint so it recognizes and trusts the incoming SSH connections
signed by the CA.

endpoint$ echo "HostCertificate /etc/ssh/endpoint-cert.pub” | sudo tee -a /etc/ssh/sshd_config
endpoint$ echo "TrustedUserCAKeys /etc/ssh/ca.pub" >> /etc/ssh/sshd_config
endpoint$ service ssh restart

OpenSSL configuration

From the endpoint, the configuration depends on the software used to collect data streams from the client.
Documentation to use FreelPA for a web-based application is proposed here:

Licensing

Most of the Security Manager relies on FreelPA which is itself a combination of many open source softwares,
which may be interchanged. Licenses are listed here:

We also have used some security clients on both the endpoint and the client, namely OpenSSH (BSD license)
and OpenSSL. (). Thus, other clients may be used in the future
with potential commercial licenses.

95

https://www.freeipa.org/page/Web_App_Authentication
https://www.freeipa.org/page/License
https://www.openssl.org/source/license.html

1.12 End-to-end Encryption Middleware for SOXFire

General Description of the Prototype

This prototype is a middleware system that accommodates secure delivery of hyper-connected city data
from their producers (i.e., publishers) and consumers (i.e., subscribers), without leakage to the smart city
platform. The middleware will be integrated into the KEIO mobile sensing platform.

Components

In order to implement the end-to-end encryption between publisher and subscriber, we need to first
implement a key management module that enables the publisher to securely deliver the encryption key to
subscriber without leakage to other possible attackers, and then implement the encryption-decryption
module that allows publisher to encrypt its data and the subscriber to decrypt the data. Figure 67 shows
such an architecture where the smart city platform possesses no knowledge of the encryption key and it
cannot access the encrypted data, avoiding data leakage in case on intrusion by an attacker on this platform.
In our prototype, we integrate the modules into the SOXFire, the basis of the KEIO mobile sensing platform.
It can be extended to other pub/sub platforms such as MQTT and One M2M.

SOXFire-Server

Decryption (Kg) Subscription Request

h

Receive (Encrypted Data) Data Content Publish (Encrypted Data)

(KE) (KPH Kpub) Keuo Security Manager Keup Koup (KE)
h h

Subscriber(X)

Publisher(X)

Figure 67. Publisher/Subscriber pattern with potential MITM in yellow and counter-measure in red

Key Management Module

In the key management module, the subscriber first sends its public key to the publisher via an open channel
in the SOXFire. When the publisher receives the public key, it will encrypt the encryption key with and then
sends it back to the subscriber. Since the SOXFire server does not possess the private key of the subscriber, it
is ensured that the encryption key is securely delivered to the subscriber.

End-to-end encryption Module

In the end-to-end encryption module, the publisher encrypts its data with the encryption key and then
publishes it to the SOXFire server. The subscriber receives data from the SOXFire server and then decrypts
the data with the encryption key obtained using the above key management module.

96

SOXFire is developed based on Openfire. Therefore, SOXFire execution environment depends on Openfire’s
specifications. In addition, the algorithm has many variations to encrypt data, and you can choose your
favorite algorithm. In this section, we describe only SOXFire.

Required Tools and dependencies

e Java
e MySQL(5.7.XX) ‘XX" means any version.
e Ant

e SOXFire source code

Download and Run Demonstrator

1. Java

Download and install Java environment. Also set SJAVA_HOME in your shell.
2. MysQL

Download and install MySQL. Then, create user and SOXfire database like this:

mysql> CREATE USER ‘soxfire’@’localhost’ IDENTIFIED BY €YOUR_PASSWORD’;
mysql> GRANT ALL RPVILENGES ON *.* To ‘soxfire’@’localhost’ WITH GRANT OPTION;
msyql> CREATE DATABASE soxfiredb DEFAULT CHARACTER SET utf8mb4;

3. Ant
Install Ant.
4. SOXFire

Download SOXFire source code:
5. Compile and start
Uncompress a downloaded zip file. Then move to build directory and build.

cd soxfire_scr/build
ant

R X

You can find compiled files in soxfire_src/work and soxfire_src/target directory. To run the SOXFire
server, got to target/openfire/bin directory and run openfire.sh.

cd soxfire_src/target/openfire/bin
./openfire.sh

3R X

6. Configuration
Open in your browser. You can see the following setup interface in Figure 68

97

http://sox.ht.sfc.keio.ac.jp/soxfire/soxfire_src-1.0.3.zip
http://localhost:9090/

P =
e soxfire

Betup

Bebup Paxres

Lisngusigs Belesion
Barwer Batings
Datarase feTogs
Profie Setingy

Walcoma to Setup

Wwlocm ks Operdire Setup. This oo willlead you Sroegh B inflal seiup of Fa serer. Belor you
i, choos your Seelerred larguage

Choodd Languags

Caech [ca_CI)
]

= English (]
Exgaiiol jas)
Frasgain (V]
Feberiareds |7
Pl (pd_PL)

Potuguls Brasiein (s{_BR)

Py (ru_RLT

Blovanting ui]

o2 (W 4%) Srolfled Chirsss |7 CM|

Figure 68. SOXFire setup screen

You can basically follow Openfire setup example as shown in the above link. Especially for SOXFire database,

select MySQL.

® xe0
e » soxfire

Setup

Setup Progress
——

+Language Selection

+Server Settings
Database Settings
Profile Settings
Adrmin Account

Database Settings - Standard Connection

Specify a JDBC driver and connection properties to connect to your database. If you need more
information about this process please see the database documentation distributed with Openfire.

Note: Database scripts for most popular databases are included in the server distribution at
[Openfire HOME)/resources/database.

Database Driver Presets:

JDBC Driver Class:

Database URL:

Username:

Password:

Minimum Cannections:

Maximum Connections:

Connection Timeout:

« MySQL <
com.mysql.jdbe. Driver

jdbe:mysaql://localhost: 3306/soxfiredh?rewriteBatchedSt

L0 Days

Note, it might take between 30-60 seconds to connect to your database.

[Cantinue |

Figure 69. SOXFire database configuration

User Manual
The user manual is available on:

This website shows the same content of ‘Download and Run Demonstrator’.

Licensing

SOXFire license depends on Openfire license: Apache License 2.0

98

http://sox.ht.sfc.keio.ac.jp/soxfire/index.html

1.13 sensiNact - Secured loT Middleware

The sensiNact Gateway implements the basic blocks for connectivity, service abstraction, device
management, virtualization and remote access. The sensiNact Gateway allows the interconnection of
different networks to achieve secured access and communication with embedded devices. The sensiNact
platform defines a generic service model, described in Figure 70, and a set of generic access methods:

e the Service provider, Service and Resource triptychs the spine of the model:
- the Service provider is attached to one location
- the Service is attached to one business concept
- and the Resource is attached to one business data

e A Resource, on which apply Access Methods, is a collection of Attributes, characterized by
Metadata

e Access Methods allow reading (client/server or publish/subscribe model) to write, and to actuate
when applicable

Metadata

0.*
metadata
1

Service q
Provider Attribute Parameter GET
1 1.% 0.*

provides attributes parameters SET

1.% 1 1
1 1.% 1 1.
Service Resource SCsss ACT
exposes methods Method
‘ T I SUBSCRIBE
Sensor State A
Property Data VErEne Action NSUBSCRIBE|

[R

modifiers

Figure 70. sensiNact service model

Unique Service I
Location Provider go

An example of the service model implementation is e =
given in Figure 75. oy | W (R

Concept A

Unique
Business Resource Wind Temperature SMS
data

Figure 75: sensiNact service model mapping
example

99

Connectivity

'g JSON RPC HTTP REST MQTT CDMI
28
§= |
2
[Device Access API J
l v Service/Resource

Repository
Device Access Implementation

1
R e

-]
c " Zolertia Waspmote || Arduino TST ZigPos STm Samsung enOcean BLE MQTT HTTP
38 Bridge Bridge || Bridge || Bridge | | Bridge | SToriPle|| SmartTV Bridge || Bridge || Bridge || Foor
2 g g g g Bridge Bridge g 2 € Bridge
= B
= =
53 { | P ! ! I
3 Zigh
XB 1gpos STm BLE HTTP
CoAP PI'DtOCFjEStECk Prsctmiﬂl Protocol Smart TV EP:S:::::\ Protocol Pl:g?o];\ Protocol
Protocol Stack o stack Protocol Stack

(ZigBee based) (zigBee based) || (ZigBee based) Stack Stack Stack Stack

Figure 71. sensiNact gateway northbound and southbound connectivity

Figure 71 shows the southbound side the sensiNact gateway which allows to cope both with “physical
device” protocols and “virtual device” ones, allowing a uniform and transparent access to an BLE network, or
an HTTP Restful web service for example (pell-mell a non-exhaustive list of supported protocols: EnOcean,
Bluetooth Low Energy, MQTT, CoAP, NGSI, Openhab, SoxFire, etc). On the northbound side the sensiNact
gateway provides both client/server and publish/subscribe access protocols (MQTT, JSON-RPC, HTTP Restful,
NGSI, CDMI, SoxFire, etc...)

Security Components

In sensiNact three sites allow providing a secured encapsulation of the data relayed by the platform as
illustrated in Figure 72:

- The encryption of data coming from connected counterpart is easily implementable over each
southbound bridge;

- The modules signature allows to define which module will be allowed to provide a feature, or a
remote system/device connection;

- Finally an OAuth2 / OpenlID intermediation service provides northbound access security

100

|JSONRPC |H'I_I'PREST| | MQrT | | CDMI

[Device Access API]

Northbound
bridges

1 v Service/Resource
Repository

Device Access Implementation

1
! ! ! !

enOcean MQTT
Bridge Bridge

Zolertia
Bridge

Southbound
bridges

Protocol Stack ’ Protocol || Protocol
(ZigBee based) i i Stack Stack

Figure 72. Secured connectivity

Encryption

o
Q.
=
(]
=,
*L°]
=3
Q
=3
[=
=
(1]
3
=
o
Q
=
o
S

The modular and generic southbound bridge template allows including a securitization process between the
sensiNact and the connected counterpart, like keys sharing allowing encrypting exchange data without any

extra implementation or update of the platform.

Module signature validation

The signature of the modules that
compose the platform at build time
permits validating that an installed
module is allowed to connect to
the others and to provide a new

feature or a secure access to a
connected counterpart. Figure 78
shows the deployment of a signed
bridge within the container.

Figure 78: Sign the X bridge

Ansi6ayi9s0

101

OAuth2 authorization intermediation service

An oAuth2/OpenID filter, implementing for now Authorization code and Resource owner password
credentials flow, offers a standard northbound secure access solution. Figure 73 and Figure 74 shows the

authorization/verification flow.

tomm - +
| Resource |
| Owner
I I
R +
I
(B)
L + Client Identifier R R L P
| +----(A)-- & Redirection URI ---->|
| User- | |
| Agent +----(B)-- User authenticates --->|
I I I
| +----(C)-- Authorization Code ---<|
+-]----]---+
I I
(A) (C)
I I
A \‘l'
Fom - +

& Redirection URI

(w/ Optional Refresh Token)

Figure 73. Authorization code flow

|>---(D)-- Authorization Code --------- :

|<---(E)----- Access Token -------------

e +
| Resource |
| Owner |
I I
e +
v
| Resource Owner

e + R T +
	=--{B} - Resource Owner ------- 2	
	Password Credentials	Authorization
Client		Server
	<--(C)---- Access Token --------- <	

| | (w/ Optional Refresh Token) | |
S + e +

Figure 74. Resource owner password credential flow

This oAuth2/OpenlD filter feature is the one presented in the demonstrator.

Required Tools and dependencies

In order to compile and deploy sensiNact, the following dependencies are required:

- Git

- Maven3.53

- Javalsg

- sensiNact source code
- Keycloak 7.0.1

Download and Run Demonstrator
JavalDK 1.8
cf.

When your environment has been installed define the JAVA_HOME targeting the JDK installation directory.

102

https://openjdk.java.net/projects/jdk8/

Git
cf.
Maven

cf.

Keycloak
cf.

When the Keycloak server is installed you can ask for a standalone execution to configure it. You need now
to configure client, roles, groups and users; A properly formatted JSON data structure help to proceed with
the required configuration.

sensiNact

Clone the sensiNact’s git source code repository:
git://git.eclipse.org/gitroot/sensinact/org.eclipse.sensinact.gateway.git

In the root directory of the newly created local repository build with maven, skipping tests to speed up the
process:

mvn clean install -DskipTests

The distribution/generator/target/sensinact now contains a distribution that we will use for the
demonstration. Paths mentioned below refer to this location.

Clear the actual default configuration files directory: rm cfgs/*
Make sure that the script is executable: chmod +x ./sensinact

Create the configuration file defining the oauth2 mechanism ./cfgs/sensinact-security-oauth2.config
and define the content as below:

discoveryURL=http://localhost:8080/auth/realms/test/.well-known/openid-configuration
certsURL=http://localhost:8080/auth/realms/test/protocol/openid-connect/certs
client_secret=testClient

client_id=testClient

slider=admin:GET:/sensinact/slider/*

Configure the HTTP service provided by the felix framework in conf/config.properties:

org.osgi.service.http.port=8899
org.apache.felix.http.debug=true
org.apache.felix.http.jettyEnabled=true
org.apache.felix.http.whiteboardEnabled=true

Configure the OAuth2 configuration file in conf/config.properties:

org.eclipse.sensinact.security.oauth2.config=cfgs/sensinact-security-oauth2.config

103

https://git-scm.com/
http://maven.apache.org/
https://www.keycloak.org/index.html

Copy the necessary modules:

cp load/simulation/slider-2.0-SNAPSHOT.jar ./bundle/
cp load/rest/*.jar ./bundle/
cp ../../../../platform/sensinact-security/sensinact-security-oauth2/target/*.jar ./bundle/

You can now run sensiNact:
./sensinact

Now If you try to access to the definition of the simulated slider device using your browser
(), you will be asked to authenticate, and if you do as adminTester
(credentials adminTester:adminTester) that is the only one allowed to access to the slider, you will see the
description of the targeted device. Figure 75 and Figure 76 shows the interfaces corresponding to those
steps.

@ | @ localhost uth/realms/te enic ect/auth? uri=htpre i - ~ localhost:8899/sensinact/slider X

&« [@ localhost:8899/sensinact/slider

$¥ Les plus visités

JS0N Données brutes En-tétes

Enregistrer Copier Tout réduire Tout développer 7 Filtrer le JSON

w response:
name "slider”
¥ services:
:H “admin"
u 1: "cursor”
sername or email
type: "DESCRIBE PROVIDER™
adminTester
uri: "/slider”
i statusCode: 208

New user? Register

Figure 75. Login as adminTester

104

http://locahost:8899/sensinact/slider

+
<« ¢ o @ | @ localhost:8855/sensinact/slider

£¥ Les plus visités

HTTP ERROR 401

Y localhost:8080/auth/realms/te otocolfopenid-connect/auth? t_uri=http://le yst:8899/authaclient s .

Problem accessing /sensinact/slider. Reason:

unauthorized

Username or email

anonymousTester

Password

New user? Register

Figure 76. Login as anonymousTester
Licensing
sensiNact is an Eclipse project and is so under Eclipse licence.

e Eclipse Public License - v 1.0 cf.

105

https://www.eclipse.org/legal/epl-v10.html

Conclusion

This document provided an introduction to M-Sec components from five different aspects, 10T security,
cloud and data level security, P2P level security and blockchain, application-level security, and overall end-
to-end security.

These components will be tested in real-life scenarios during the upcoming pilots
and the integration with other components will be examined. Table 7 below summarizes the discussion
reflected in this document.

Table 7: Demonstrators and its correlation with Use Case Pilots

Use Case 1 Pilot

Hardware-based 11 Provide embedded security layer to loT
SECURED IOT DEVICE . 0 .
solution devices
Pilot 1.2
Use Cases 3 & 4 . .
INTRUSION DETECTION Software-based Pilot3.1 Pilot Secure loT mobile sensing platform by
ilot-3. ilot-
SYSTEM (IDS) solution a1 monitoring and preventing cyber attacks

Further improvements will be made based on the pilot study results deploying the use cases. Therefore, the
input received from end users, namely citizens and visitors from both smart cities involved in the trials and
interacting with the loT equipment, is crucial for the consortium to make decisions and improve the
deployment along the course of the project execution. This will affect, on the one hand, the kind of data
provided and/or its frequency, the applications, related to this loT equipment, which are the way for end
users to interact with the overall system. On the other hand, the moment the deployments are working, the
consortium will keep an eye on the kind of cyber-attacks it suffers in order to conduct appropriate
countermeasure and thus evolve the M-Sec platform as a whole.

Cloud and data level security includes three components that enhance the security of data between the
devices and their respective backends in complementary ways. At first we show how encryption on loT
devices can be made in a safer manner in a domain in which the integration of complex algorithms is quite
often neglected due to a lack of resources. Then, we have presented a tool that can monitor deployed
devices and enables detection/responses facing attacks. Finally, we present a privacy-enhancing technology
that removes any individual or cars on video streams that can be captured in the public space.

At this stage, the security technologies demonstrated in this deliverable are planned to be integrated with
the use cases as described in Table 8.

106

Table 8: Demonstrators and its correlation with Use Case Pilots

Use Case 1 Pilot
Hardware-based Hardware-based 11 Provide embedded security layer to loT

encryption solution devices
Pilot 1.2

Use Cases 3 & 4 . .
Software-based Threat Software-based Pilot3.1 Pilot Secure loT mobile sensing platform by
ilot-3. ilot-
Monitoring solution a1 monitoring and preventing cyber attacks

Image Processing Tool for . .

. . Software-based Use Case 3 Enable privacy on the video feeds from IP
Video Privacy . .
. solution Pilot-3.1 cameras
(GANonymizer)

P2P level security and blockchains presented three different demonstrators: blockchain framework and
middleware services, loT marketplace, trust & reputation management. In our next steps we are going to
further explore the potential of smart contracts to support the different M-Sec Use cases and integrate
middleware services with the rest of the components. Trust levels over a trustless loT infrastructure will be
further researched in order to allow the convergence of the specific implementations in a broader smart city
context. Blockchains will be studied also as a technology foundation upon which values can be exchanged in
an loT infrastructure, enabling thus devices to buy services from other devices. Finally, a model that
integrates Trust and Reputation model within loT Marketplace and smart contracts will be further examined.

Application-level security establishes engineering foundations to support the development of secure smart
city applications of the M-Sec system. We have presented the description of two prototypes, the Crypto
Companion Database and the Security analysis tool. The Crypto Companion Database provides sensitive
data security that cannot be stored on Blockchain. The Security analysis tool provides security requirements
that the use case diagram cannot elicit. They contribute to establishing engineering foundations to support
the development of secure applications of the M-Sec system.

Finally, overall end-to-end security consists of three demonstrations bound together to provide end-to-end
security. At first we have presented a Security Manager which provides a core directory to store any “M-Sec”
entity security information such as certificates, passwords and so on. This Security Manager is designed to
provide security functions to the overall M-Sec component developed in other WP4 tasks such as loT
Devices, communication channels, blockchain system and applications. First integration of this Security
Manager has started in the M-Sec middlewares such as SOXFire and sensiNact, enabling safer collection and
distribution of data at a smart city level. Having a common security manager on both this middleware also
provides interoperability for cross-border use-cases with the central management of credentials. The
integration will continue in the next period and will be iterated with the Use-Case needs.

107

